1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
!**********************************************************************
! Copyright 1998,1999,2000,2001,2002,2005,2007,2008,2009,2010 *
! Andreas Stohl, Petra Seibert, A. Frank, Gerhard Wotawa, *
! Caroline Forster, Sabine Eckhardt, John Burkhart, Harald Sodemann *
! *
! This file is part of FLEXPART. *
! *
! FLEXPART is free software: you can redistribute it and/or modify *
! it under the terms of the GNU General Public License as published by*
! the Free Software Foundation, either version 3 of the License, or *
! (at your option) any later version. *
! *
! FLEXPART is distributed in the hope that it will be useful, *
! but WITHOUT ANY WARRANTY; without even the implied warranty of *
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
! GNU General Public License for more details. *
! *
! You should have received a copy of the GNU General Public License *
! along with FLEXPART. If not, see <http://www.gnu.org/licenses/>. *
!**********************************************************************
subroutine part0(dquer,dsigma,density,fract,schmi,cun,vsh)
! i i i o o o o
!*****************************************************************************
! *
! Calculation of time independent factors of the dry deposition of *
! particles: *
! Log-Normal-distribution of mass [dM/dlog(dp)], unimodal *
! *
! AUTHOR: Matthias Langer, adapted by Andreas Stohl, 13 November 1993 *
! *
! Literature: *
! [1] Scire/Yamartino/Carmichael/Chang (1989), *
! CALGRID: A Mesoscale Photochemical Grid Model. *
! Vol II: User's Guide. (Report No.A049-1, June, 1989) *
! *
!*****************************************************************************
! *
! Variables: *
! alpha help variable *
! cun 'slip-flow' correction after Cunningham *
! d01 [um] upper diameter *
! d02 [um] lower diameter *
! dc [m2/s] coefficient of Brownian diffusion *
! delta distance given in standard deviation units *
! density [kg/m3] density of the particle *
! dmean geometric mean diameter of interval *
! dquer [um] geometric mass mean particle diameter *
! dsigma e.g. dsigma=10 or dsigma=0.1 means that 68% of the mass *
! are between 0.1*dquer and 10*dquer *
! fract(ni) mass fraction of each diameter interval *
! kn Knudsen number *
! ni number of diameter intervals, for which deposition *
! is calculated *
! schmidt Schmidt number *
! schmi schmidt**2/3 *
! vsh [m/s] gravitational settling velocity of the particle *
! x01 normalized upper diameter *
! x02 normalized lower diameter *
! *
! Constants: *
! g [m/s2] Acceleration of gravity *
! kb [J/K] Stefan-Boltzmann constant *
! lam [m] mean free path of air molecules *
! myl [kg/m/s] dynamical viscosity of air *
! nyl [m2/s] kinematic viscosity of air *
! tr reference temperature *
! *
! Function: *
! erf calculates the integral of the Gauss function *
! *
!*****************************************************************************
use par_mod
implicit none
real,parameter :: tr=293.15
integer :: i
real :: dquer,dsigma,density,xdummy,d01,d02,delta,x01,x02,fract(ni)
real :: dmean,alpha,cun,dc,schmidt,schmi(ni),vsh(ni),kn,erf
real,parameter :: myl=1.81e-5,nyl=0.15e-4
real,parameter :: lam=6.53e-8,kb=1.38e-23,eps=1.2e-38
! xdummy constant for all intervals
!**********************************
xdummy=sqrt(2.)*alog(dsigma)
! particles diameters are split up to ni intervals between
! dquer-3*dsigma and dquer+3*dsigma
!*********************************************************
delta=6./real(ni)
d01=dquer*dsigma**(-3)
do i=1,ni
d02=d01
d01=dquer*dsigma**(-3.+delta*real(i))
x01=alog(d01/dquer)/xdummy
x02=alog(d02/dquer)/xdummy
! Area under Gauss-function is calculated and gives mass fraction of interval
!****************************************************************************
fract(i)=0.5*(erf(x01)-erf(x02))
! Geometric mean diameter of interval in [m]
!*******************************************
dmean=1.E-6*exp(0.5*alog(d01*d02))
! Calculation of time independent parameters of each interval
!************************************************************
kn=2.*lam/dmean
if ((-1.1/kn).le.log10(eps)*log(10.)) then
alpha=1.257
else
alpha=1.257+0.4*exp(-1.1/kn)
endif
cun=1.+alpha*kn
dc=kb*tr*cun/(3.*pi*myl*dmean)
schmidt=nyl/dc
schmi(i)=schmidt**(-2./3.)
vsh(i)=ga*density*dmean*dmean*cun/(18.*myl)
end do
end subroutine part0
|