1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
subroutine calcpv(n)
C
********************************************************************************
* *
* Calculation of potential vorticity on 3-d grid. *
* *
* Author: P. James *
* 3 February 2000 *
* *
********************************************************************************
* *
* Variables: *
* n temporal index for meteorological fields (1 to 3) *
* *
* Constants: *
* *
********************************************************************************
include 'includepar'
include 'includecom'
integer n,ix,jy,i,j,k,kl,ii,jj,klvrp,klvrm,klpt,kup,kdn,kch
integer jyvp,jyvm,ixvp,ixvm,jumpx,jumpy,jux,juy,ivrm,ivrp,ivr
integer nlck
real vx(2),uy(2),phi,tanphi,cosphi,dvdx,dudy,f
real theta,thetap,thetam,dthetadp,dt1,dt2,dt,ppmk
real height(nuvzmax),pvavr,ppml(nuvzmax)
real thup,thdn
C Set number of levels to check for adjacent theta
nlck=nuvz/3
do 5 k=1,nuvz
height(k)=akz(k)/p0+bkz(k)
5 continue
C *** Precalculate all theta levels for efficiency
do 9 jy=0,ny-1
do 14 kl=1,nuvz
do 13 ix=0,nx-1
ppmk=akz(kl)+bkz(kl)*ps(ix,jy,1,n)
th(ix,jy,kl,n)=tt(ix,jy,kl,n)*(100000./ppmk)**kappa
13 continue
14 continue
9 continue
C
C Loop over entire grid
***********************
do 10 jy=0,ny-1
if (sglobal.and.jy.eq.0) goto 10
if (nglobal.and.jy.eq.ny-1) goto 10
phi = (ylat0 + jy * dy) * pi / 180.
f = 0.00014585 * sin(phi)
tanphi = tan(phi)
cosphi = cos(phi)
C Provide a virtual jy+1 and jy-1 in case we are on domain edge (Lat)
jyvp=jy+1
jyvm=jy-1
if (jy.eq.0) jyvm=0
if (jy.eq.ny-1) jyvp=ny-1
C Define absolute gap length
jumpy=2
if (jy.eq.0.or.jy.eq.ny-1) jumpy=1
if (sglobal.and.jy.eq.1) then
jyvm=1
jumpy=1
end if
if (nglobal.and.jy.eq.ny-2) then
jyvp=ny-2
jumpy=1
end if
juy=jumpy
C
do 11 ix=0,nx-1
C Provide a virtual ix+1 and ix-1 in case we are on domain edge (Long)
ixvp=ix+1
ixvm=ix-1
jumpx=2
if (xglobal) then
ivrp=ixvp
ivrm=ixvm
if (ixvm.lt.0) ivrm=ixvm+nx-1
if (ixvp.ge.nx) ivrp=ixvp-nx+1
else
if (ix.eq.0) ixvm=0
if (ix.eq.nx-1) ixvp=nx-1
ivrp=ixvp
ivrm=ixvm
C Define absolute gap length
if (ix.eq.0.or.ix.eq.nx-1) jumpx=1
end if
jux=jumpx
C Precalculate pressure values for efficiency
do 8 kl=1,nuvz
ppml(kl)=akz(kl)+bkz(kl)*ps(ix,jy,1,n)
8 continue
C
C Loop over the vertical
************************
do 12 kl=1,nuvz
theta=th(ix,jy,kl,n)
klvrp=kl+1
klvrm=kl-1
klpt=kl
C If top or bottom level, dthetadp is evaluated between the current
C level and the level inside, otherwise between level+1 and level-1
C
if (klvrp.gt.nuvz) klvrp=nuvz
if (klvrm.lt.1) klvrm=1
thetap=th(ix,jy,klvrp,n)
thetam=th(ix,jy,klvrm,n)
dthetadp=(thetap-thetam)/(ppml(klvrp)-ppml(klvrm))
C Compute vertical position at pot. temperature surface on subgrid
C and the wind at that position
******************************************************************
C a) in x direction
ii=0
do 20 i=ixvm,ixvp,jumpx
ivr=i
if (xglobal) then
if (i.lt.0) ivr=ivr+nx-1
if (i.ge.nx) ivr=ivr-nx+1
end if
ii=ii+1
C Search adjacent levels for current theta value
C Spiral out from current level for efficiency
kup=klpt-1
kdn=klpt
kch=0
40 continue
C Upward branch
kup=kup+1
if (kch.ge.nlck) goto 21 ! No more levels to check,
C ! and no values found
if (kup.ge.nuvz) goto 41
kch=kch+1
k=kup
thdn=th(ivr,jy,k,n)
thup=th(ivr,jy,k+1,n)
if (((thdn.ge.theta).and.(thup.le.theta)).or.
+ ((thdn.le.theta).and.(thup.ge.theta))) then
dt1=abs(theta-thdn)
dt2=abs(theta-thup)
dt=dt1+dt2
if (dt.lt.eps) then ! Avoid division by zero error
dt1=0.5 ! G.W., 10.4.1996
dt2=0.5
dt=1.0
endif
vx(ii)=(vv(ivr,jy,k,n)*dt2+vv(ivr,jy,k+1,n)*dt1)/dt
goto 20
endif
41 continue
C Downward branch
kdn=kdn-1
if (kdn.lt.1) goto 40
kch=kch+1
k=kdn
thdn=th(ivr,jy,k,n)
thup=th(ivr,jy,k+1,n)
if (((thdn.ge.theta).and.(thup.le.theta)).or.
+ ((thdn.le.theta).and.(thup.ge.theta))) then
dt1=abs(theta-thdn)
dt2=abs(theta-thup)
dt=dt1+dt2
if (dt.lt.eps) then ! Avoid division by zero error
dt1=0.5 ! G.W., 10.4.1996
dt2=0.5
dt=1.0
endif
vx(ii)=(vv(ivr,jy,k,n)*dt2+vv(ivr,jy,k+1,n)*dt1)/dt
goto 20
endif
goto 40
C This section used when no values were found
21 continue
C Must use vv at current level and long. jux becomes smaller by 1
vx(ii)=vv(ix,jy,kl,n)
jux=jux-1
C Otherwise OK
20 continue
if (jux.gt.0) then
dvdx=(vx(2)-vx(1))/float(jux)/(dx*pi/180.)
else
dvdx=vv(ivrp,jy,kl,n)-vv(ivrm,jy,kl,n)
dvdx=dvdx/float(jumpx)/(dx*pi/180.)
C Only happens if no equivalent theta value
C can be found on either side, hence must use values
C from either side, same pressure level.
end if
C b) in y direction
jj=0
do 50 j=jyvm,jyvp,jumpy
jj=jj+1
C Search adjacent levels for current theta value
C Spiral out from current level for efficiency
kup=klpt-1
kdn=klpt
kch=0
70 continue
C Upward branch
kup=kup+1
if (kch.ge.nlck) goto 51 ! No more levels to check,
C ! and no values found
if (kup.ge.nuvz) goto 71
kch=kch+1
k=kup
thdn=th(ix,j,k,n)
thup=th(ix,j,k+1,n)
if (((thdn.ge.theta).and.(thup.le.theta)).or.
+ ((thdn.le.theta).and.(thup.ge.theta))) then
dt1=abs(theta-thdn)
dt2=abs(theta-thup)
dt=dt1+dt2
if (dt.lt.eps) then ! Avoid division by zero error
dt1=0.5 ! G.W., 10.4.1996
dt2=0.5
dt=1.0
endif
uy(jj)=(uu(ix,j,k,n)*dt2+uu(ix,j,k+1,n)*dt1)/dt
goto 50
endif
71 continue
C Downward branch
kdn=kdn-1
if (kdn.lt.1) goto 70
kch=kch+1
k=kdn
thdn=th(ix,j,k,n)
thup=th(ix,j,k+1,n)
if (((thdn.ge.theta).and.(thup.le.theta)).or.
+ ((thdn.le.theta).and.(thup.ge.theta))) then
dt1=abs(theta-thdn)
dt2=abs(theta-thup)
dt=dt1+dt2
if (dt.lt.eps) then ! Avoid division by zero error
dt1=0.5 ! G.W., 10.4.1996
dt2=0.5
dt=1.0
endif
uy(jj)=(uu(ix,j,k,n)*dt2+uu(ix,j,k+1,n)*dt1)/dt
goto 50
endif
goto 70
C This section used when no values were found
51 continue
C Must use uu at current level and lat. juy becomes smaller by 1
uy(jj)=uu(ix,jy,kl,n)
juy=juy-1
C Otherwise OK
50 continue
if (juy.gt.0) then
dudy=(uy(2)-uy(1))/float(juy)/(dy*pi/180.)
else
dudy=uu(ix,jyvp,kl,n)-uu(ix,jyvm,kl,n)
dudy=dudy/float(jumpy)/(dy*pi/180.)
end if
C
pv(ix,jy,kl,n)=dthetadp*(f+(dvdx/cosphi-dudy
+ +uu(ix,jy,kl,n)*tanphi)/r_earth)*(-1.e6)*9.81
C
C Resest jux and juy
jux=jumpx
juy=jumpy
12 continue
11 continue
10 continue
C
C Fill in missing PV values on poles, if present
C Use mean PV of surrounding latitude ring
C
if (sglobal) then
do 80 kl=1,nuvz
pvavr=0.
do 81 ix=0,nx-1
pvavr=pvavr+pv(ix,1,kl,n)
81 continue
pvavr=pvavr/float(nx)
jy=0
do 82 ix=0,nx-1
pv(ix,jy,kl,n)=pvavr
82 continue
80 continue
end if
if (nglobal) then
do 90 kl=1,nuvz
pvavr=0.
do 91 ix=0,nx-1
pvavr=pvavr+pv(ix,ny-2,kl,n)
91 continue
pvavr=pvavr/float(nx)
jy=ny-1
do 92 ix=0,nx-1
pv(ix,jy,kl,n)=pvavr
92 continue
90 continue
end if
return
end
|