1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
|
subroutine petters(minstep,nt,itime,xold,yold,zold,pold,hold,
+qqold,pvold,thold,xnew,ynew,znew,pnew,hnew,qqnew,pvnew,thnew,
+ntstep,nstop,levconst,init,lkind,lkindz,unc,trerroru,
+trerrorv,trerrorw)
C i i i i i i o o
C o o o o o o o o o o o
C o o i i i i i o
C o o
********************************************************************************
* *
* Calculation of trajectories utilizing the Petterssen scheme. *
* The time step is determined by the Courant-Friedrichs-Lewy (CFL) criterion. *
* This means that the time step must be so small that the displacement within *
* this time step is smaller than 1 grid distance. Additionally, a temporal *
* CFL criterion is introduced: the time step must be smaller than the time *
* interval of the wind fields used for interpolation. *
* The CFL criterion is only used for the initialization of the iteration *
* scheme. Within the Petterssen iteration scheme this time step is not *
* corrected, but kept constant. *
* *
* Author: A. Stohl *
* *
* 1 February 1994 *
* *
* Update: 16 February 1997: limitation of the estimated truncation error *
* *
* Update: 29 July 1998: use of global data *
* *
* Literature: *
* Petterssen (1940): Weather Analysis and Forecasting. McGraw-Hill Book *
* Company, Inc. *
* Seibert P. (1993): Convergence and Accuracy of Numerical Methods for *
* Trajectory Calculation. J. Appl. Met. 32, 558-566. *
* *
********************************************************************************
* *
* Variables: *
* corr correlation coefficient of random errors *
* epsu,epsv,epsw magnitude of random errors for uncertainty trajecories *
* idiff [s] Temporal distance between the windfields used for interpol*
* init .true. for first time step of trajectory *
* indwz index of the model layer beneath current position of traj.*
* itermax maximum number of iterations used in the integration schem*
* itime [s] current temporal position *
* ldirect Temporal direction of trajectories (-1=backward,1=forward)*
* levconst height of trajectory in Pa, m or K depending on type of t.*
* lkind kind of trajectory (e.g. isobaric, 3-dimensional) *
* lkindz unit of z coordinate (1:masl, 2:magl, 3:hPa) *
* minstep [s] minimum possible time step=not to exceed dimension maxtime*
* ngrid index which grid is to be used *
* nstop =greater 0, if trajectory calculation is finished *
* nt [s] Current age of trajectory *
* ntstep final time step of trajectory calculation *
* ntstep1 time step determined by horizontal CFL-criterion *
* ntstep2 time step determined by vertical CFL-criterion *
* ntstep3 time step determined by temporal CFL-criterion *
* pnew,hnew height at next time steps position in pressure and z coor *
* pold,hold height at current time steps position in p and z coordina *
* pvold,pvnew [Ks-1Pa-1] potential vorticity at old and new position *
* qqold,qqnew specific humidity at old and new position *
* thold,thnew potential temperature at old and new position *
* trerroru, trerrorv, trerrorw memory of random errors added at last timestep*
* unew,vnew,wnew Wind components at next time steps position of trajectory *
* uold,vold,wold Wind components at current position of trajectory *
* vvmax maximum of u and v, help variable *
* wheight(nwzmax) Heights of the model layers for w component *
* xhelp,yhelp,zhelp help variables *
* xnew,ynew,znew Next time step's spatial position of trajectory *
* xold,yold,zold Actual spatial position of trajectory *
* zdist vertical grid distance at current position of trajectory *
* *
* Constants: *
* cfl factor, by which the time step has to be smaller than the *
* spatial CFL-criterion *
* cflt factor, by which the time step has to be smaller than the *
* temporal CFL-criterion *
* deltahormax maximum horizontal distance between two iterations *
* deltavermax maximum vertical distance between two iterations *
* eps1 tiny number *
* itermax maximum number of iterations *
* *
********************************************************************************
include 'includepar'
include 'includecom'
integer i,j,nt,itime,nstop,idiff,indwz,ntstep,ntstep1,ntstep2
integer ntstep3,minstep,lkind,lkindz,idummy,ngrid
real xold,yold,zold,xnew,ynew,znew,xhelp,yhelp,zhelp,uint,vint
real unew,vnew,wnew,uold,vold,wold,vvmax,zdist,levconst
real pold,hold,pnew,hnew,pvold,pvnew,thold,thnew,qqold,qqnew
real gasdev,xlon,ylat,xpol,ypol,gridsize
real cgszll,xpolold,ypolold,corr,trerroru,trerrorv,trerrorw
logical init,unc
save idummy
data idummy/-7/
nstop=0
ntstep=0
C Determine whether lat/long grid or polarstereographic projection
C is to be used
C Furthermore, determine which nesting level to be used
******************************************************************
c write (*,*) 'petters',nglobal,yold,switchnorthg
if (nglobal.and.(yold.gt.switchnorthg)) then
ngrid=-1
else if (sglobal.and.(yold.lt.switchsouthg)) then
ngrid=-2
else
ngrid=0
do 12 j=numbnests,1,-1
if ((xold.gt.xln(j)).and.(xold.lt.xrn(j)).and.
+ (yold.gt.yln(j)).and.(yold.lt.yrn(j))) then
ngrid=j
goto 13
endif
12 continue
13 continue
endif
C Get wind data at the current trajectory position
**************************************************
call getwind(.true.,init,itime,levconst,xold,yold,zold,lkind,
+lkindz,2,ngrid,uint,vint,wold,idiff,indwz,nstop)
if (nstop.gt.1) return
C Transformation m/s --> grid units/time unit
*********************************************
if (ngrid.ge.0) then ! mother domain
call utransform(uint,yold,uold)
call vtransform(vint,vold)
else if (ngrid.eq.-1) then ! around north pole
xlon=xlon0+xold*dx
ylat=ylat0+yold*dy
gridsize=1000.*cgszll(northpolemap,ylat,xlon)
uold=uint/gridsize
vold=vint/gridsize
else if (ngrid.eq.-2) then ! around south pole
xlon=xlon0+xold*dx
ylat=ylat0+yold*dy
gridsize=1000.*cgszll(southpolemap,ylat,xlon)
uold=uint/gridsize
vold=vint/gridsize
endif
C Calculate the time step determined by the CFL criterion
C Three independent CFL-criteria are used:
C 1) In horizontal direction = displacement smaller than grid distance
C 2) In vertical direction = displacement smaller than grid distance
C 3) In temporal direction = distance between the 2 windfields used for interpol
C The final time step is the minimum of 1,2 and 3
********************************************************************************
if (ngrid.lt.0) then
ntstep1=999999
else
vvmax=max(abs(uold)*xresoln(ngrid),abs(vold)*yresoln(ngrid),eps1)
ntstep1=int(min(1./vvmax/cfl,999999.)) ! 1
endif
if (lkind.eq.1) then
zdist=wheight(indwz+1)-wheight(indwz)
if (abs(wold).lt.eps1) wold=eps1
ntstep2=int(min(zdist/abs(wold)/cfl,999999.)) ! 2
else
ntstep2=999999
endif
ntstep3=int(float(idiff)/cflt) ! 3
ntstep=min(ntstep1,ntstep2,ntstep3)
if (ntstep.lt.1) ntstep=1 ! minimum step = 1 second
C Check, if such a short time step is possible. Under the assumption
C that all following time steps have the same length, check if this
C would lead to an exceedance of field dimensions. If this is the case
C increase the time step. However the time step cannot be greater than
C the time difference between 2 wind fields
**********************************************************************
if ((inter.ne.1).and.(ntstep.lt.minstep)) then
ntstep=min(minstep,idiff)
write(*,*) 'Warning: time step exceeds CFL-criterion!'
endif
if (ldirect.eq.-1) ntstep=-1*ntstep ! backward t. -> negative
C If the last step of trajectory is reached, give nstop code 1
C Reduce the time step, so that trajectory ends exactly after lentra seconds
****************************************************************************
if (abs(nt+ntstep).ge.abs(lentra)) then
ntstep=ldirect*(abs(lentra-nt))
nstop=1
endif
C Calculate first guess position at time step nt+ntstep
*******************************************************
if (ngrid.ge.0) then ! mother domain
xnew=xold+uold*float(ntstep)
ynew=yold+vold*float(ntstep)
else if (ngrid.eq.-1) then ! around north pole
call cll2xy(northpolemap,ylat,xlon,xpolold,ypolold)
xpol=xpolold+uold*float(ntstep)
ypol=ypolold+vold*float(ntstep)
call cxy2ll(northpolemap,xpol,ypol,ylat,xlon)
xnew=(xlon-xlon0)/dx
ynew=(ylat-ylat0)/dy
else if (ngrid.eq.-2) then ! around south pole
call cll2xy(southpolemap,ylat,xlon,xpolold,ypolold)
xpol=xpolold+uold*float(ntstep)
ypol=ypolold+vold*float(ntstep)
call cxy2ll(southpolemap,xpol,ypol,ylat,xlon)
xnew=(xlon-xlon0)/dx
ynew=(ylat-ylat0)/dy
endif
if(lkind.eq.1) then
znew=zold+wold*float(ntstep)
else
znew=zold
endif
C Check position: If trajectory outside model domain, terminate it
******************************************************************
if (znew.gt.heightmax) znew=heightmax
if (znew.lt.heightmin) znew=heightmin
C If global data are available, use cyclic boundary condition
*************************************************************
if (xglobal) then
if (xnew.gt.float(nx-1)) xnew=xnew-float(nx-1)
if (xnew.lt.0.) xnew=xnew+float(nx-1)
endif
if ((xnew.lt.0.).or.(xnew.gt.float(nx-1)).or.(ynew.lt.0.).or.
+(ynew.gt.float(ny-1))) then
nstop=2
return
endif
C Iteration. A maximum of itermax iterations is allowed. Iteration is
C terminated, when distance between two iterations is less than the maximum
C allowable distance deltadistmax
***************************************************************************
do 10 i=1,itermax
xhelp=xnew
yhelp=ynew
zhelp=znew
C Check whether position is within a nest
*****************************************
if (ngrid.ge.0) then
ngrid=0
do 22 j=numbnests,1,-1
if ((xnew.gt.xln(j)).and.(xnew.lt.xrn(j)).and.
+ (ynew.gt.yln(j)).and.(ynew.lt.yrn(j))) then
ngrid=j
goto 23
endif
22 continue
23 continue
endif
C Get wind data at trajectory position at time step nt+ntstep
*************************************************************
call getwind(.false.,init,itime+ntstep,levconst,xnew,ynew,
+ znew,lkind,lkindz,i,ngrid,uint,vint,wnew,idiff,indwz,nstop)
if (nstop.gt.1) return
C Transformation m/s --> grid units/time unit and advection
***********************************************************
if (ngrid.ge.0) then
call utransform(uint,ynew,unew)
call vtransform(vint,vnew)
xnew=xold+(uold+unew)*float(ntstep)/2.
ynew=yold+(vold+vnew)*float(ntstep)/2.
else if (ngrid.eq.-1) then ! around north pole
xlon=xlon0+xnew*dx
ylat=ylat0+ynew*dy
gridsize=1000.*cgszll(northpolemap,ylat,xlon)
unew=uint/gridsize
vnew=vint/gridsize
xpol=xpolold+(uold+unew)*float(ntstep)/2.
ypol=ypolold+(vold+vnew)*float(ntstep)/2.
call cxy2ll(northpolemap,xpol,ypol,ylat,xlon)
xnew=(xlon-xlon0)/dx
ynew=(ylat-ylat0)/dy
else if (ngrid.eq.-2) then ! around south pole
xlon=xlon0+xnew*dx
ylat=ylat0+ynew*dy
gridsize=1000.*cgszll(southpolemap,ylat,xlon)
unew=uint/gridsize
vnew=vint/gridsize
xpol=xpolold+(uold+unew)*float(ntstep)/2.
ypol=ypolold+(vold+vnew)*float(ntstep)/2.
call cxy2ll(southpolemap,xpol,ypol,ylat,xlon)
xnew=(xlon-xlon0)/dx
ynew=(ylat-ylat0)/dy
endif
if(lkind.eq.1) then
znew=zold+(wold+wnew)*float(ntstep)/2.
endif
C Check position: If trajectory outside model domain, terminate it
******************************************************************
if (znew.gt.heightmax) znew=heightmax
if (znew.lt.heightmin) znew=heightmin
C If global data are available, use cyclic boundary condition
*************************************************************
if (xglobal) then
if (xnew.gt.float(nx-1)) xnew=xnew-float(nx-1)
if (xnew.lt.0.) xnew=xnew+float(nx-1)
endif
if ((xnew.lt.0.).or.(xnew.gt.float(nx-1)).or.(ynew.lt.0.).or.
+ (ynew.gt.float(ny-1))) then
nstop=2
return
endif
C If the distance between two iterations is less than the maximum allowable
C one (in vertical and horizontal direction), leave the loop.
***************************************************************************
if (lkind.eq.1) then
if ((sqrt((xhelp-xnew)*(xhelp-xnew)+(yhelp-ynew)*(yhelp-ynew))
+ .lt.deltahormax).and.
+ (abs(zhelp-znew).lt.deltavermax*zdist)) goto 20
else
if (sqrt((xhelp-xnew)*(xhelp-xnew)+(yhelp-ynew)*(yhelp-ynew))
+ .lt.deltahormax) goto 20
endif
10 continue
20 continue
C Calculate random displacement for uncertainty trajectories
C using a Langevin equation
C For this, an autocorrelation of wind errors is calculated.
C This is not done near the poles!
************************************************************
if (unc.and.(ngrid.ge.0)) then
corr=exp(-1./(relaxtime*max(cfl,cflt)))
trerroru=corr*trerroru+gasdev(idummy)*epsu*sqrt(1.-corr**2)
xnew=xnew+trerroru*(uold+unew)*float(ntstep)/2.
trerrorv=corr*trerrorv+gasdev(idummy)*epsv*sqrt(1.-corr**2)
ynew=ynew+trerrorv*(vold+vnew)*float(ntstep)/2.
trerrorw=corr*trerrorw+gasdev(idummy)*epsw*sqrt(1.-corr**2)
znew=znew+trerrorw*(wold+wnew)*float(ntstep)/2.
if (xglobal) then
if (xnew.gt.float(nx-1)) xnew=xnew-float(nx-1)
if (xnew.lt.0.) xnew=xnew+float(nx-1)
endif
if ((xnew.lt.0.).or.(xnew.gt.float(nx-1)).or.(ynew.lt.0.).or.
+ (ynew.gt.float(ny-1))) then
nstop=2
return
endif
if (znew.gt.heightmax) znew=heightmax
if (znew.lt.heightmin) znew=heightmin
endif
C Calculate vertical position of trajectory in pressure and z coordinates.
C Interpolate also additional meteo data (PV, THETA, Spec. Hum.) to
C trajectory position.
C This is always done for the new positions, only for the first position
C of the trajectory it is necessary to calculate the old positions.
*************************************************************************
if (init) then
call getheight(itime,xold,yold,zold,pold,hold)
call getmet(itime,xold,yold,zold,qqold,pvold,thold)
endif
call getheight(itime+ntstep,xnew,ynew,znew,pnew,hnew)
call getmet(itime+ntstep,xnew,ynew,znew,qqnew,pvnew,thnew)
return
end
|