File: levinterpol.f

package info (click to toggle)
flextra 5.0-2.1
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 860 kB
  • ctags: 402
  • sloc: fortran: 6,987; makefile: 55; sh: 17
file content (236 lines) | stat: -rw-r--r-- 9,910 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
      subroutine levinterpol(yy,nxmax,nymax,nzmax,nx,ny,memind,
     +xt,yt,level,itime1,itime2,itime,indexf,yint)
C                               i    i     i     i   i  i    i
C     i  i    i     i      i      i     i    o
*****************************************************************************
*                                                                           *
*  Interpolation of 3-dimensional meteorological fields.                    *
*  In horizontal direction bicubic interpolation interpolation is used.     *
*  In the temporal direction linear interpolation is used.                  *
*  These interpolation techniques have been found to be most accurate.      *
*                                                                           *
*  The interpolation routines have been taken from:                         *
*  Press W.H. et al. (1992): Numerical Recipes in FORTRAN. The art of       *
*  scientific computing. 2nd edition. Cambridge University Press.           *
*                                                                           *
*  But they have been modified for faster performance.                      *
*                                                                           *
*  4-3                                                                      *
*  | |  The points are numbered in this order. Values and gradients are     *
*  1-2  stored in fields with dimension 4.                                  *
*                                                                           *
*  1 is the first time                                                      *
*  2 is the second time                                                     *
*                                                                           *
*                                                                           *
*     Author: A. Stohl                                                      *
*                                                                           *
*     30 May 1994                                                           *
*                                                                           *
*****************************************************************************
*                                                                           *
* Variables:                                                                *
*                                                                           *
* dt1,dt2              time differences between fields and current position *
* indexf                indicates the number of the wind field to be read in *
* indexfh               help variable                                        *
* level                help variable                                        *
* itime                current time                                         *
* itime1               time of the first wind field                         *
* itime2               time of the second wind field                        *
* ix,jy                x,y coordinates of lower left subgrid point          *
* level                level for which interpolation shall be done          *
* memind(3)            points to the places of the wind fields              *
* nx,ny                actual field dimensions in x,y and z direction       *
* nxmax,nymax,nzmax    maximum field dimensions in x,y and z direction      *
* x1l,x2l              x,y coordinates of lower left subgrid point          *
* x1u,x2u              x,y coordinates of upper right subgrid point         *
* xt                   current x coordinate                                 *
* y(4,2,1)             subset of 4 points for 2 times and 1 level           *
* ygx(4,2,1)           x gradients at 4 points for 2 times and 1 level      *
* ygy(4,2,1)           y gradients at 4 points for 2 times and 1 level      *
* ygxy(4,2,1)          x,y gradients at 4 points for 2 times and 1 level    *
* yhelp(2,1)           the interpolated values for 2 times and 1 level      *
* yint                 the final interpolated value                         *
* yt                   current y coordinate                                 *
* yy(0:nxmax,0:nymax,nzmax,3) meteorological field used for interpolation   *
*                                                                           *
*****************************************************************************

      implicit none

      integer nx,ny,nxmax,nymax,nzmax,memind(3),i,j,l,m,n,ix,jy
      integer level,itime,itime1,itime2,indexf,indexfh,im,ip,jm,jp
      real yy(0:nxmax-1,0:nymax-1,nzmax,3)
      real y(4,2,1),ygx(4,2,1),ygy(4,2,1),ygxy(4,2,1),yhelp(2,1)
      real x1l,x1u,x2l,x2u,dt1,dt2
      real xt,yt,yint
     


C If point at border of grid -> small displacement into grid
************************************************************

      if (xt.ge.float(nx-1)) xt=float(nx-1)-0.00001
      if (yt.ge.float(ny-1)) yt=float(ny-1)-0.00001



***********************************************************************
C 1.) Bicubic horizontal interpolation
C This has to be done separately for 2 fields (Temporal)
***********************************************************************

C Determine the lower left corner
********************************* 

      ix=int(xt)
      jy=int(yt)

      x1l=float(ix)
      x1u=float(ix+1)
      x2l=float(jy)
      x2u=float(jy+1)


C Loop over the 2*2 grid points
*******************************

      do 10 l=1,4
        if (l.eq.1) then
          i=ix
          j=jy
        else if (l.eq.2) then
          i=ix+1
          j=jy
        else if (l.eq.3) then
          i=ix+1
          j=jy+1
        else if (l.eq.4) then
          i=ix
          j=jy+1
        endif
        ip=i+1
        im=i-1
        jp=j+1
        jm=j-1


C Loop over 2 time steps and 3 levels
*************************************
 
        do 10 m=1,2
        do 10 n=1,1        ! this loop and dimension is necessary to be in 
                           ! agreement with the full 3-d interpolation

          indexfh=memind(indexf+m-1)


C Values at the 2*2 subgrid
***************************

          y(l,m,n)=yy(i,j,level,indexfh)   


C Calculate derivatives in x-direction on the 2*2 subgrid
*********************************************************

          if (i.eq.0) then
            ygx(l,m,n) = yy(ip,j ,level,indexfh)
     +                 - yy(i ,j ,level,indexfh)
          else if (i.eq.nx-1) then
            ygx(l,m,n) = yy(i ,j ,level,indexfh)
     +                 - yy(im,j ,level,indexfh)
          else
            ygx(l,m,n) =(yy(ip,j ,level,indexfh)
     +                 - yy(im,j ,level,indexfh))/2.
          endif


C Calculate derivatives in y-direction on the 2*2 subgrid
*********************************************************

          if (j.eq.0) then
            ygy(l,m,n) = yy(i ,jp,level,indexfh)
     +                 - yy(i ,j ,level,indexfh)
          else if (j.eq.ny-1) then
            ygy(l,m,n) = yy(i ,j ,level,indexfh)
     +                 - yy(i ,jm,level,indexfh)
          else
            ygy(l,m,n) =(yy(i ,jp,level,indexfh)
     +                 - yy(i ,jm,level,indexfh))/2.
          endif


C Calculate cross derivative on the 2*2 subgrid
***********************************************

          if ((i.eq.0).and.(j.eq.0)) then
            ygxy(l,m,n)= yy(ip,jp,level,indexfh)-
     +                   yy(ip,j ,level,indexfh)-
     +                   yy(i ,jp,level,indexfh)+
     +                   yy(i ,j ,level,indexfh)
          else if ((i.eq.nx-1).and.(j.eq.ny-1)) then
            ygxy(l,m,n)= yy(i ,j ,level,indexfh)-
     +                   yy(i ,jm,level,indexfh)-
     +                   yy(im,j ,level,indexfh)+
     +                   yy(im,jm,level,indexfh)
          else if ((i.eq.0).and.(j.eq.ny-1)) then
            ygxy(l,m,n)= yy(ip,j ,level,indexfh)-
     +                   yy(ip,jm,level,indexfh)-
     +                   yy(i ,j ,level,indexfh)+
     +                   yy(i ,jm,level,indexfh)
          else if ((i.eq.nx-1).and.(j.eq.0)) then
            ygxy(l,m,n)= yy(i ,jp,level,indexfh)-
     +                   yy(i ,j ,level,indexfh)-
     +                   yy(im,jp,level,indexfh)+
     +                   yy(im,j ,level,indexfh)
          else if (i.eq.nx-1) then
            ygxy(l,m,n)=(yy(i ,jp,level,indexfh)-
     +                   yy(i ,jm,level,indexfh)-
     +                   yy(im,jp,level,indexfh)+
     +                   yy(im,jm,level,indexfh))/2.
          else if (i.eq.0) then
            ygxy(l,m,n)=(yy(ip,jp,level,indexfh)-
     +                   yy(ip,jm,level,indexfh)-
     +                   yy(i ,jp,level,indexfh)+
     +                   yy(i ,jm,level,indexfh))/2.
          else if (j.eq.ny-1) then
            ygxy(l,m,n)=(yy(ip,j ,level,indexfh)-
     +                   yy(ip,jm,level,indexfh)-
     +                   yy(im,j ,level,indexfh)+
     +                   yy(im,jm,level,indexfh))/2.
          else if (j.eq.0) then
            ygxy(l,m,n)=(yy(ip,jp,level,indexfh)-
     +                   yy(ip,j ,level,indexfh)-
     +                   yy(im,jp,level,indexfh)+
     +                   yy(im,j ,level,indexfh))/2.
          else
            ygxy(l,m,n)=(yy(ip,jp,level,indexfh)-
     +                   yy(ip,jm,level,indexfh)-
     +                   yy(im,jp,level,indexfh)+
     +                   yy(im,jm,level,indexfh))/4.
          endif

10        continue


C Call bicubic interpolation
****************************

      call bicubic(y,ygx,ygy,ygxy,x1l,x1u,x2l,x2u,xt,yt,yhelp,2,1)



*************************************
C 2.) Temporal interpolation (linear)
*************************************

      dt1=float(itime-itime1)
      dt2=float(itime2-itime)

      yint=(yhelp(1,1)*dt2+yhelp(2,1)*dt1)/(dt1+dt2)


      return
      end