File: readwind_gfs.f

package info (click to toggle)
flextra 5.0-6
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 924 kB
  • ctags: 439
  • sloc: fortran: 7,018; makefile: 57; sh: 17
file content (596 lines) | stat: -rw-r--r-- 21,634 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
      subroutine readwind(indj,n)
***********************************************************************
*                                                                     * 
*             TRAJECTORY MODEL SUBROUTINE READWIND                    *
*                                                                     *
***********************************************************************
*                                                                     * 
*             AUTHOR:      G. WOTAWA                                  *
*             DATE:        1997-08-05                                 *
*             LAST UPDATE: ----------                                 *
*             Update:      1998-07-29, global fields allowed          *
*             A. Stohl, G. Wotawa                                     *
*             Update:      2001-01-05 NCEP Data Pressure levels       * 
*                                                                     * 
***********************************************************************
*                                                                     *
* DESCRIPTION:                                                        *
*                                                                     *
* READING OF ECMWF METEOROLOGICAL FIELDS FROM INPUT DATA FILES. THE   *
* INPUT DATA FILES ARE EXPECTED TO BE AVAILABLE IN GRIB CODE          *
*                                                                     *
* INPUT:                                                              *
* indj               indicates number of the wind field to be read in *
* n                  temporal index for meteorological fields (1 to 3)*
*                                                                     *
* IMPORTANT VARIABLES FROM COMMON BLOCK:                              *
*                                                                     *
* wfname             File name of data to be read in                  *
* nxfield,ny,nuvz,nwz     expected field dimensions                   *
* nlev_ec            number of vertical levels ecmwf model            *
* uu,vv,ww           wind fields                                      *
* tt,qq              temperature and specific humidity                *
* ps                 surface pressure                                 *
*                                                                     *
***********************************************************************
      use grib_api
      include 'includepar'
      include 'includecom'

      integer ii,indj,i,j,k,n,ifield,iumax
      integer ix,jy,induvz,indwz,numpt,numpu,numpv,numpw,numprh
      real help,temp,plev,ew,elev

* VARIABLES AND ARRAYS NEEDED FOR GRIB DECODING

C dimension of isec2 at least (22+n), where n is the number of parallels or
C meridians in a quasi-regular (reduced) Gaussian or lat/long grid

C dimension of zsec2 at least (10+nn), where nn is the number of vertical
C coordinate parameters

      integer isec1(56),isec2(22+nxmax+nymax)
      real zsec4(jpunp)
      real xaux,yaux,xaux0,yaux0
      real ylat,xlon,wdummy,ffpol,ddpol,xlonr
      real uuaux,vvaux,uupolaux,vvpolaux

      logical error

!     parameters for grib_api 
      integer ifile
      integer iret
      integer igrib
      integer*4 isize
      integer gribVer,parCat,parNum,typSurf,valSurf
      real*8 zsecn4(jpunp*4) 
      real*8 xauxin,yauxin

      integer i179,i180,i181

      iumax=0
*
* OPENING OF DATA FILE (GRIB CODE)
*
*
* OPENING OF DATA FILE (GRIB CODE)
*
!HSO
!     print*,'reading winds from ',path(3)(1:len(3))
!    >//trim(wfname(indj)),'|'
!5     iret=grib_open_file(ifile,path(3)(1:len(3))
5     call grib_open_file(ifile,path(3)(1:len(3))
     >//trim(wfname(indj)),'r',iret)
      call grib_check(iret,'flextra','readwind_gfs.f')
!     turn on support for multi fields messages
      call grib_multi_support_on()


      numpt=0
      numpu=0
      numpv=0
      numpw=0
      numprh=0
      ifield=0
10    ifield=ifield+1
*
* GET NEXT FIELDS
*

      call grib_new_from_file(ifile,igrib,iret)      
      if (igrib .eq. -1 )  then         
        if (iret .ne. -1) then
          call grib_check(iret,'flextra','readwind_gfs.f')
          goto 888   ! ERROR DETECTED
        endif
        goto 50    ! EOF DETECTED
      endif

!     first see if we read GRIB1 or GRIB2
      call grib_get_int(  igrib,
     >'editionNumber',gribVer, iret)
      call grib_check(iret, 'flextra', 'readwind_gfs.f')
!     get the size and data of the values array
      call grib_get_size(igrib,'values',isize)
      call grib_get_real8_array(igrib,'values',zsecn4,isize)
      do  i=1,isize
        zsec4(i)=zsecn4(i)
      enddo

      if (gribVer.eq.1) then ! GRIB Edition 1

!     read the grib1 identifiers
      call grib_get_int(  igrib,
     >        'indicatorOfParameter',isec1(6), iret)
      call grib_check(iret,'flextra','readwind_gfs.f')
      call grib_get_int(  igrib,
     >'indicatorOfTypeOfLevel',isec1(7), iret)
      call grib_check(iret,'flextra','readwind_gfs.f')
      call grib_get_int(  igrib,
     >     'level',isec1(8), iret)
      call grib_check(iret,'flextra','readwind_gfs.f')


      else ! GRIB Edition 2

!     read the grib2 identifiers
      call grib_get_int(  igrib,
     >'parameterCategory',parCat, iret)
      call grib_check(iret,'flextra','readwind_gfs.f')
      call grib_get_int(  igrib,
     >'parameterNumber',parNum, iret)
      call grib_check(iret,'flextra','readwind_gfs.f')
      call grib_get_int(  igrib,
     >     'typeOfFirstFixedSurface',typSurf, iret)
      call grib_check(iret,'flextra','readwind_gfs.f')
      call grib_get_int(  igrib,
     >     'scaledValueOfFirstFixedSurface',valSurf, iret)
      call grib_check(iret,'flextra','readwind_gfs.f')


!     convert to grib1 identifiers
      isec1(6)=-1
      isec1(7)=-1
      isec1(8)=-1
      if ((parCat.eq.0).and.(parNum.eq.0).and.(typSurf.eq.100)) then ! T
        isec1(6)=11          ! indicatorOfParameter
        isec1(7)=100         ! indicatorOfTypeOfLevel
        isec1(8)=valSurf/100 ! level, convert to hPa
      elseif ((parCat.eq.2).and.(parNum.eq.2).and.(typSurf.eq.100)) then ! U
        isec1(6)=33          ! indicatorOfParameter
        isec1(7)=100         ! indicatorOfTypeOfLevel
        isec1(8)=valSurf/100 ! level, convert to hPa
      elseif ((parCat.eq.2).and.(parNum.eq.3).and.(typSurf.eq.100)) then ! V
        isec1(6)=34          ! indicatorOfParameter
        isec1(7)=100         ! indicatorOfTypeOfLevel
        isec1(8)=valSurf/100 ! level, convert to hPa
      elseif ((parCat.eq.2).and.(parNum.eq.8).and.(typSurf.eq.100)) then ! W
        isec1(6)=39          ! indicatorOfParameter
        isec1(7)=100         ! indicatorOfTypeOfLevel
        isec1(8)=valSurf/100 ! level, convert to hPa
      elseif ((parCat.eq.1).and.(parNum.eq.1).and.(typSurf.eq.100)) then ! RH
        isec1(6)=52          ! indicatorOfParameter
        isec1(7)=100         ! indicatorOfTypeOfLevel
        isec1(8)=valSurf/100 ! level, convert to hPa
      elseif ((parCat.eq.1).and.(parNum.eq.1).and.(typSurf.eq.103)) then ! RH2
        isec1(6)=52          ! indicatorOfParameter
        isec1(7)=105         ! indicatorOfTypeOfLevel
        isec1(8)=2
      elseif ((parCat.eq.0).and.(parNum.eq.0).and.(typSurf.eq.103)) then ! T2
        isec1(6)=11          ! indicatorOfParameter
        isec1(7)=105         ! indicatorOfTypeOfLevel
        isec1(8)=2
      elseif ((parCat.eq.2).and.(parNum.eq.2).and.(typSurf.eq.103)) then ! U10
        isec1(6)=33          ! indicatorOfParameter
        isec1(7)=105         ! indicatorOfTypeOfLevel
        isec1(8)=10
      elseif ((parCat.eq.2).and.(parNum.eq.3).and.(typSurf.eq.103)) then ! V10
        isec1(6)=34          ! indicatorOfParameter
        isec1(7)=105         ! indicatorOfTypeOfLevel
        isec1(8)=10
      elseif ((parCat.eq.3).and.(parNum.eq.1).and.(typSurf.eq.101)) then ! SLP
        isec1(6)=2           ! indicatorOfParameter
        isec1(7)=102         ! indicatorOfTypeOfLevel
        isec1(8)=0
      elseif ((parCat.eq.3).and.(parNum.eq.0).and.(typSurf.eq.1)) then ! SP
        isec1(6)=1           ! indicatorOfParameter
        isec1(7)=1           ! indicatorOfTypeOfLevel
        isec1(8)=0
      elseif ((parCat.eq.1).and.(parNum.eq.13).and.(typSurf.eq.1)) then ! SNOW
        isec1(6)=66          ! indicatorOfParameter
        isec1(7)=1           ! indicatorOfTypeOfLevel
        isec1(8)=0
      elseif ((parCat.eq.0).and.(parNum.eq.0).and.(typSurf.eq.104)) then ! T sigma 0
        isec1(6)=11          ! indicatorOfParameter
        isec1(7)=107         ! indicatorOfTypeOfLevel
        isec1(8)=0.995       ! lowest sigma level
      elseif ((parCat.eq.2).and.(parNum.eq.2).and.(typSurf.eq.104)) then ! U sigma 0
        isec1(6)=33          ! indicatorOfParameter
        isec1(7)=107         ! indicatorOfTypeOfLevel
        isec1(8)=0.995       ! lowest sigma level
      elseif ((parCat.eq.2).and.(parNum.eq.3).and.(typSurf.eq.104)) then ! V sigma 0
        isec1(6)=34          ! indicatorOfParameter
        isec1(7)=107         ! indicatorOfTypeOfLevel
        isec1(8)=0.995       ! lowest sigma level
      elseif ((parCat.eq.3).and.(parNum.eq.5).and.(typSurf.eq.1)) then ! TOPO 
        isec1(6)=7           ! indicatorOfParameter
        isec1(7)=1           ! indicatorOfTypeOfLevel
        isec1(8)=0
      elseif ((parCat.eq.0).and.(parNum.eq.0).and.(typSurf.eq.1)) then ! LSM
        isec1(6)=81          ! indicatorOfParameter
        isec1(7)=1           ! indicatorOfTypeOfLevel
        isec1(8)=0
      elseif ((parCat.eq.3).and.(parNum.eq.196).and.(typSurf.eq.1)) then ! BLH
        isec1(6)=221         ! indicatorOfParameter
        isec1(7)=1           ! indicatorOfTypeOfLevel
        isec1(8)=0
      elseif ((parCat.eq.1).and.(parNum.eq.7).and.(typSurf.eq.1)) then ! LSP/TP
        isec1(6)=62          ! indicatorOfParameter
        isec1(7)=1           ! indicatorOfTypeOfLevel
        isec1(8)=0
      elseif ((parCat.eq.1).and.(parNum.eq.196).and.(typSurf.eq.1)) then ! CP
        isec1(6)=63          ! indicatorOfParameter
        isec1(7)=1           ! indicatorOfTypeOfLevel
        isec1(8)=0
      endif

      endif ! gribVer


C Check whether we are on a little endian or on a big endian computer
*********************************************************************

c     if (inbuff(1).eq.1112101447) then         ! little endian, swap bytes
c       iswap=1+ilen/4
c       call swap32(inbuff,iswap)
c     else if (inbuff(1).ne.1196575042) then    ! big endian
c       stop 'subroutine gridcheck: corrupt GRIB data'
c     endif

c     if (ierr.ne.0) goto 10    ! ERROR DETECTED

      if(ifield.eq.1) then

!     get the required fields from section 2 
!     store compatible to gribex input
      call grib_get_int(  igrib,
     >'numberOfPointsAlongAParallel',isec2(2), iret)
      call grib_check(iret,'flextra','readwind_gfs.f')
      call grib_get_int(  igrib,
     >'numberOfPointsAlongAMeridian',isec2(3), iret)
      call grib_check(iret,'flextra','readwind_gfs.f')
      call grib_get_real8(igrib,
     >'longitudeOfFirstGridPointInDegrees',xauxin, iret)
      call grib_check(iret,'flextra','readwind_gfs.f')
      call grib_get_real8(igrib,
     >'latitudeOfLastGridPointInDegrees',yauxin, iret)
      call grib_check(iret,'flextra','readwind_gfs.f')
      xaux=xauxin
      yaux=yauxin

* CHECK GRID SPECIFICATIONS

         if(isec2(2).ne.nxfield) stop 'READWIND: NX NOT CONSISTENT'
        if(isec2(3).ne.ny) stop 'READWIND: NY NOT CONSISTENT'
        if(xaux.eq.0.) xaux=-179.0     ! NCEP DATA
        xaux0=xlon0
        yaux0=ylat0
        if(xaux.lt.0.) xaux=xaux+360.
        if(yaux.lt.0.) yaux=yaux+360.
        if(xaux0.lt.0.) xaux0=xaux0+360.
        if(yaux0.lt.0.) yaux0=yaux0+360.
        if(abs(xaux-xaux0).gt.eps) 
     &    stop 'READWIND: LOWER LEFT LONGITUDE NOT CONSISTENT'
        if(abs(yaux-yaux0).gt.eps)
     &    stop 'READWIND: LOWER LEFT LATITUDE NOT CONSISTENT'
      endif
!HSO end of edits

      i179=nint(179./dx)
      i180=nint(179./dx)+1
      i181=i180+1

      do 20 j=0,ny-1
        do 20 i=0,nxfield-1

          if((isec1(6).eq.011).and.(isec1(7).eq.100)) then
* TEMPERATURE
           if((i.eq.0).and.(j.eq.0)) then
                do 21 ii=1,nuvz
                  if ((isec1(8)*100.0).eq.akz(ii)) numpt=ii
21              continue
            endif
            help=zsec4(nxfield*(ny-j-1)+i+1)
            if(i.le.i180) then
              tt(i179+i,j,numpt,n)=help
            else
              tt(i-i181,j,numpt,n)=help
            endif
          endif

          if((isec1(6).eq.033).and.(isec1(7).eq.100)) then
* U VELOCITY
             if((i.eq.0).and.(j.eq.0)) then
                do 22 ii=1,nuvz
                  if ((isec1(8)*100.0).eq.akz(ii)) numpu=ii
22              continue
            endif

            help=zsec4(nxfield*(ny-j-1)+i+1)
            if(i.le.i180) then
              uu(i179+i,j,numpu,n)=help
            else
              uu(i-i181,j,numpu,n)=help
            endif
          endif

          if((isec1(6).eq.034).and.(isec1(7).eq.100)) then
* V VELOCITY
             if((i.eq.0).and.(j.eq.0)) then
                do 23 ii=1,nuvz
                  if ((isec1(8)*100.0).eq.akz(ii)) numpv=ii
23              continue
            endif
            help=zsec4(nxfield*(ny-j-1)+i+1)
            if(i.le.i180) then
              vv(i179+i,j,numpv,n)=help
            else
              vv(i-i181,j,numpv,n)=help
            endif
          endif

          if((isec1(6).eq.039).and.(isec1(7).eq.100)) then
* W VELOCITY
             if((i.eq.0).and.(j.eq.0)) then
                do 25 ii=1,nuvz
                  if ((isec1(8)*100.0).eq.akz(ii)) numpw=ii
25              continue
            endif
            help=zsec4(nxfield*(ny-j-1)+i+1)
            if(i.le.i180) then
              ww(i179+i,j,numpw,n)=help
            else
              ww(i-i181,j,numpw,n)=help
            endif
          endif

          if((isec1(6).eq.052).and.(isec1(7).eq.100)) then
* RELATIVE HUMIDITY -> CONVERT TO SPECIFIC HUMIDITY
          if((i.eq.0).and.(j.eq.0)) then
                do 24 ii=1,nuvz
                  if ((isec1(8)*100.0).eq.akz(ii)) numprh=ii
24              continue
            endif
            help=zsec4(nxfield*(ny-j-1)+i+1)
            if(i.le.i180) then
              qq(i179+i,j,numprh,n)=help
            else
              qq(i-i181,j,numprh,n)=help
            endif
          endif

          if((isec1(6).eq.001).and.(isec1(7).eq.001)) then
* SURFACE PRESSURE
            help=zsec4(nxfield*(ny-j-1)+i+1)
            if(i.le.i180) then
              ps(i179+i,j,1,n)=help
            else
              ps(i-i181,j,1,n)=help
            endif
          endif

          if((isec1(6).eq.007).and.(isec1(7).eq.001)) then
* TOPOGRAPHY
            help=zsec4(nxfield*(ny-j-1)+i+1)
            if(i.le.i180) then
              oro(i179+i,j)=help
            else
              oro(i-i181,j)=help
            endif
          endif

20        continue

          if((isec1(6).eq.33).and.(isec1(7).eq.100)) iumax=iumax+1

      if (igrib.ne.-1) then
         call grib_release(igrib, iret)
         call grib_check(iret,'flextra','readwind_gfs.f')               
      endif

      goto 10                      !! READ NEXT LEVEL OR PARAMETER

50    continue
*
* CLOSING OF INPUT DATA FILE
*
      call grib_close_file(ifile, iret)
      call grib_check(iret,'flextra','readwind_gfs.f')



* TRANSFORM RH TO SPECIFIC HUMIDITY AS NEEDED

      do 65 j=0,ny-1
        do 65 i=0,nxfield-1
          do 65 k=1,nuvz
            help=qq(i,j,k,n)
            temp=tt(i,j,k,n)
            plev=akm(k)
            elev=ew(temp)*help/100.0
            qq(i,j,k,n)=xmwml*(elev/(plev-((1.0-xmwml)*elev)))
65    continue

C For global fields, assign rightmost grid point the value of the
C leftmost point
*****************************************************************

      if (xglobal) then
        do 70 j=0,ny-1
          oro(nx-1,j)=oro(0,j)
          ps(nx-1,j,1,n)=ps(0,j,1,n)
          do 71 induvz=1,nuvz
            tt(nx-1,j,induvz,n)=tt(0,j,induvz,n)
            qq(nx-1,j,induvz,n)=qq(0,j,induvz,n)
            uu(nx-1,j,induvz,n)=uu(0,j,induvz,n)
71          vv(nx-1,j,induvz,n)=vv(0,j,induvz,n)
          do 70 indwz=1,nwz
70          ww(nx-1,j,indwz,n)=ww(0,j,indwz,n)
      endif


C If north pole is in the domain, calculate wind velocities in polar
C stereographic coordinates
********************************************************************

      if (nglobal) then
        do 74 jy=int(switchnorthg)-2,ny-1
          ylat=ylat0+float(jy)*dy
          do 74 ix=0,nx-1
            xlon=xlon0+float(ix)*dx
            do 74 induvz=1,nuvz
74            call cc2gll(northpolemap,ylat,xlon,uu(ix,jy,induvz,n),
     +        vv(ix,jy,induvz,n),uupol(ix,jy,induvz,n),
     +        vvpol(ix,jy,induvz,n))


        do 76 induvz=1,nuvz

* CALCULATE FFPOL, DDPOL FOR CENTRAL GRID POINT
          xlon=xlon0+float(nx/2-1)*dx
          xlonr=xlon*pi/180.
          ffpol=sqrt(uu(nx/2-1,ny-1,induvz,n)**2+
     &               vv(nx/2-1,ny-1,induvz,n)**2)
          if(vv(nx/2-1,ny-1,induvz,n).lt.0.) then
            if(vv(nx/2-1,ny-1,induvz,n).gt.-0.00001)
     &         vv(nx/2-1,ny-1,induvz,n)=-0.00001
            ddpol=atan(uu(nx/2-1,ny-1,induvz,n)/
     &                 vv(nx/2-1,ny-1,induvz,n))-xlonr
          else
            if(vv(nx/2-1,ny-1,induvz,n).lt. 0.00001)
     &         vv(nx/2-1,ny-1,induvz,n)= 0.00001
            ddpol=pi+atan(uu(nx/2-1,ny-1,induvz,n)/
     &                    vv(nx/2-1,ny-1,induvz,n))-xlonr
          endif
          if(ddpol.lt.0.) ddpol=2.0*pi+ddpol
          if(ddpol.gt.2.0*pi) ddpol=ddpol-2.0*pi

* CALCULATE U,V FOR 180 DEG, TRANSFORM TO POLAR STEREOGRAPHIC GRID
          xlon=180.0
          xlonr=xlon*pi/180.
          ylat=90.0
          uuaux=-ffpol*sin(xlonr+ddpol)
          vvaux=-ffpol*cos(xlonr+ddpol)
          call cc2gll(northpolemap,ylat,xlon,uuaux,vvaux,uupolaux,
     +      vvpolaux)

          jy=ny-1
          do 76 ix=0,nx-1
            uupol(ix,jy,induvz,n)=uupolaux
            vvpol(ix,jy,induvz,n)=vvpolaux
76      continue


* Fix: Set W at pole to the zonally averaged W of the next equator-
* ward parallel of latitude
 
      do 85 indwz=1,nwz
          wdummy=0.
          jy=ny-2
          do 80 ix=0,nx-1
80          wdummy=wdummy+ww(ix,jy,indwz,n)
          wdummy=wdummy/float(nx)
          jy=ny-1
          do 85 ix=0,nx-1
85          ww(ix,jy,indwz,n)=wdummy

      endif

C If south pole is in the domain, calculate wind velocities in polar
C stereographic coordinates
********************************************************************

      if (sglobal) then
        do 77 jy=0,int(switchsouthg)+3
          ylat=ylat0+float(jy)*dy
          do 77 ix=0,nx-1
            xlon=xlon0+float(ix)*dx
            do 77 induvz=1,nuvz
77            call cc2gll(southpolemap,ylat,xlon,uu(ix,jy,induvz,n),
     +        vv(ix,jy,induvz,n),uupol(ix,jy,induvz,n),
     +        vvpol(ix,jy,induvz,n))

        do 79 induvz=1,nuvz

* CALCULATE FFPOL, DDPOL FOR CENTRAL GRID POINT
          xlon=xlon0+float(nx/2-1)*dx
          xlonr=xlon*pi/180.
          ffpol=sqrt(uu(nx/2-1,0,induvz,n)**2+
     &               vv(nx/2-1,0,induvz,n)**2)
          if(vv(nx/2-1,0,induvz,n).lt.0.) then
            if(vv(nx/2-1,0,induvz,n).gt.-0.00001) 
     &        vv(nx/2-1,0,induvz,n)=-0.00001
            ddpol=atan(uu(nx/2-1,0,induvz,n)/
     &                 vv(nx/2-1,0,induvz,n))+xlonr
          else
            if(vv(nx/2-1,0,induvz,n).lt. 0.00001) 
     &        vv(nx/2-1,0,induvz,n)= 0.00001
            ddpol=pi+atan(uu(nx/2-1,0,induvz,n)/
     &                    vv(nx/2-1,0,induvz,n))+xlonr
          endif
          if(ddpol.lt.0.) ddpol=2.0*pi+ddpol
          if(ddpol.gt.2.0*pi) ddpol=ddpol-2.0*pi

* CALCULATE U,V FOR 180 DEG, TRANSFORM TO POLAR STEREOGRAPHIC GRID
          xlon=180.0
          xlonr=xlon*pi/180.
          ylat=-90.0
          uuaux=+ffpol*sin(xlonr-ddpol)
          vvaux=-ffpol*cos(xlonr-ddpol)
          call cc2gll(northpolemap,ylat,xlon,uuaux,vvaux,uupolaux,
     +      vvpolaux)

          jy=0
          do 79 ix=0,nx-1
            uupol(ix,jy,induvz,n)=uupolaux
79          vvpol(ix,jy,induvz,n)=vvpolaux


* Fix: Set W at pole to the zonally averaged W of the next equator-
* ward parallel of latitude
 
        do 95 indwz=1,nwz
          wdummy=0.
          jy=1
          do 90 ix=0,nx-1
90          wdummy=wdummy+ww(ix,jy,indwz,n)
          wdummy=wdummy/float(nx)
          jy=0
          do 95 ix=0,nx-1
95          ww(ix,jy,indwz,n)=wdummy
      endif

      WRITE(*,*) WFTIME(INDJ),' SEC ',WFTIME(INDJ)/3600,' HRS ',
     +WFTIME(INDJ)/3600/24,' DAYS  ', WFNAME(INDJ)
      if(iumax.ne.nuvz) stop 'READWIND: NUVZ NOT CONSISTENT'
      if(iumax.ne.nwz)  stop 'READWIND: NWZ NOT CONSISTENT'


C Calculate potential temperature and potential vorticity on whole grid
***********************************************************************

      call calcpv(n)


      return    
888   write(*,*) ' #### TRAJECTORY MODEL ERROR! WINDFIELD       #### ' 
      write(*,*) ' #### ',wfname(indj),'                    #### '
      write(*,*) ' #### IS NOT GRIB FORMAT !!!                  #### '
      stop 'Execution terminated'

999   write(*,*) ' #### TRAJECTORY MODEL ERROR! WINDFIELD       #### ' 
      write(*,*) ' #### ',wfname(indj),'                    #### '
      write(*,*) ' #### CANNOT BE OPENED !!!                    #### '
      error=1

      end