1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
/*
Copyright (C) 2019 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "acb_dirichlet.h"
/*
Claim: the error is bounded by 1/64 if n <= 1 and (1/64) (log(n)/n) if n >= 2.
A crude lower bound for g_n is 2 pi exp(W(n)), or 8*n/log(n) for n >= 8.
We want to solve pi n = -t/2 log(2 pi/t) - t/2 - pi/8 + epsilon for t (= g_n).
Using (47) in Brent [https://arxiv.org/abs/1609.03682], |epsilon| <= 1/(8 t) for for t >= 2.
Also, for x >= 3, |f'(x)| < 0.5 where f(x) = exp(W(x)).
Assume n >= 9, so that (n+1/8)/e >= 3.35. Then inverting gives
t = 2 pi exp[W( [pi n - epsilon + pi/8] / (pi e) ) + 1]
= 2 pi e exp[W((n+1/8)/e - epsilon / (pi e))]
= 2 pi e exp[W((n+1/8)/e)] + epsilon2, |epsilon2| <= 1/(8 t) <= (1/64) (log(n)/n)
One can check 0 <= n <= 8 separately.
*/
static void
gram_point_initial(arb_t x, const fmpz_t n, slong prec)
{
arb_t pi, e;
mag_t b;
arb_init(pi);
arb_init(e);
mag_init(b);
arb_const_pi(pi, prec);
arb_const_e(e, prec);
/* x = 2*pi*exp(1 + W((n+1/8)/e)) */
arb_one(x);
arb_mul_2exp_si(x, x, -3);
arb_add_fmpz(x, x, n, prec);
arb_div(x, x, e, prec);
arb_lambertw(x, x, 0, prec);
arb_add_ui(x, x, 1, prec);
arb_exp(x, x, prec);
arb_mul(x, x, pi, prec);
arb_mul_2exp_si(x, x, 1);
if (fmpz_cmp_ui(n, 1) <= 0)
{
mag_set_ui_2exp_si(b, 1, -6);
}
else
{
mag_set_fmpz(b, n);
mag_log(b, b);
mag_div_fmpz(b, b, n);
mag_mul_2exp_si(b, b, -6);
}
arb_add_error_mag(x, b);
arb_clear(pi);
arb_clear(e);
mag_clear(b);
}
void
acb_dirichlet_gram_point(arb_t res, const fmpz_t n, const dirichlet_group_t G, const dirichlet_char_t chi, slong prec)
{
slong asymp_accuracy;
/* Only implemented for n >= -1 and Riemann zeta. */
if (fmpz_cmp_si(n, -1) < 0 || G != NULL || chi != NULL)
{
arb_indeterminate(res);
return;
}
asymp_accuracy = 2 * fmpz_bits(n);
asymp_accuracy = FLINT_MIN(asymp_accuracy, prec);
gram_point_initial(res, n, asymp_accuracy + 20);
asymp_accuracy = arb_rel_accuracy_bits(res);
if (asymp_accuracy < prec)
{
acb_struct tmp[2];
arb_t f, fprime, root;
mag_t C, r;
slong * steps;
slong wp, step;
acb_init(tmp);
acb_init(tmp + 1);
arb_init(f);
arb_init(fprime);
arb_init(root);
mag_init(C);
mag_init(r);
steps = flint_malloc(sizeof(slong) * FLINT_BITS);
step = 0;
steps[step] = prec * 1.05 + 10;
while (steps[step] / 2 > asymp_accuracy)
{
steps[step + 1] = steps[step] / 2;
step++;
}
arb_set(root, res);
/* theta''(x) <= C = 1/x, x >= 1 */
arb_get_mag_lower(C, root);
if (mag_cmp_2exp_si(C, 0) >= 0)
mag_inv(C, C);
else
mag_inf(C);
arb_set(root, res);
for ( ; step >= 0; step--)
{
wp = steps[step] + 10;
wp = FLINT_MAX(wp, arb_rel_accuracy_bits(root) + 10);
/* store radius, set root to the midpoint */
mag_set(r, arb_radref(root));
mag_zero(arb_radref(root));
acb_set_arb(tmp, root);
acb_dirichlet_hardy_theta(tmp, tmp, NULL, NULL, 2, wp);
arb_set(f, acb_realref(tmp));
arb_const_pi(acb_imagref(tmp), wp);
arb_submul_fmpz(f, acb_imagref(tmp), n, wp);
arb_set(fprime, acb_realref(tmp + 1));
/* f'([m+/-r]) = f'(m) +/- f''([m +/- r]) * r */
mag_mul(r, C, r);
arb_add_error_mag(fprime, r);
arb_div(f, f, fprime, wp);
arb_sub(root, root, f, wp);
/* Verify inclusion so that C is still valid. */
if (!arb_contains(res, root))
{
flint_printf("unexpected: no containment computing Gram point\n");
arb_set(root, res);
break;
}
}
arb_set(res, root);
acb_clear(tmp);
acb_clear(tmp + 1);
arb_clear(f);
arb_clear(fprime);
arb_clear(root);
mag_clear(C);
mag_clear(r);
flint_free(steps);
}
arb_set_round(res, res, prec);
}
|