File: gram_point.c

package info (click to toggle)
flint-arb 1%3A2.19.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 13,028 kB
  • sloc: ansic: 177,109; sh: 553; makefile: 288; python: 268
file content (174 lines) | stat: -rw-r--r-- 4,615 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
/*
    Copyright (C) 2019 Fredrik Johansson

    This file is part of Arb.

    Arb is free software: you can redistribute it and/or modify it under
    the terms of the GNU Lesser General Public License (LGPL) as published
    by the Free Software Foundation; either version 2.1 of the License, or
    (at your option) any later version.  See <http://www.gnu.org/licenses/>.
*/

#include "acb_dirichlet.h"

/*
Claim: the error is bounded by 1/64 if n <= 1 and (1/64) (log(n)/n) if n >= 2.

A crude lower bound for g_n is 2 pi exp(W(n)), or 8*n/log(n) for n >= 8.

We want to solve pi n = -t/2 log(2 pi/t) - t/2 - pi/8 + epsilon for t (= g_n).
Using (47) in Brent [https://arxiv.org/abs/1609.03682], |epsilon| <= 1/(8 t) for for t >= 2.
Also, for x >= 3, |f'(x)| < 0.5 where f(x) = exp(W(x)).

Assume n >= 9, so that (n+1/8)/e >= 3.35. Then inverting gives

t = 2 pi exp[W( [pi n - epsilon + pi/8] / (pi e) ) + 1]
  = 2 pi e exp[W((n+1/8)/e  - epsilon / (pi e))]
  = 2 pi e exp[W((n+1/8)/e)] + epsilon2, |epsilon2| <= 1/(8 t) <= (1/64) (log(n)/n)

One can check 0 <= n <= 8 separately.
*/
static void
gram_point_initial(arb_t x, const fmpz_t n, slong prec)
{
    arb_t pi, e;
    mag_t b;

    arb_init(pi);
    arb_init(e);
    mag_init(b);

    arb_const_pi(pi, prec);
    arb_const_e(e, prec);

    /* x = 2*pi*exp(1 + W((n+1/8)/e)) */
    arb_one(x);
    arb_mul_2exp_si(x, x, -3);
    arb_add_fmpz(x, x, n, prec);
    arb_div(x, x, e, prec);
    arb_lambertw(x, x, 0, prec);
    arb_add_ui(x, x, 1, prec);
    arb_exp(x, x, prec);
    arb_mul(x, x, pi, prec);
    arb_mul_2exp_si(x, x, 1);

    if (fmpz_cmp_ui(n, 1) <= 0)
    {
        mag_set_ui_2exp_si(b, 1, -6);
    }
    else
    {
        mag_set_fmpz(b, n);
        mag_log(b, b);
        mag_div_fmpz(b, b, n);
        mag_mul_2exp_si(b, b, -6);
    }

    arb_add_error_mag(x, b);

    arb_clear(pi);
    arb_clear(e);
    mag_clear(b);
}

void
acb_dirichlet_gram_point(arb_t res, const fmpz_t n, const dirichlet_group_t G, const dirichlet_char_t chi, slong prec)
{
    slong asymp_accuracy;

    /* Only implemented for n >= -1 and Riemann zeta. */
    if (fmpz_cmp_si(n, -1) < 0 || G != NULL || chi != NULL)
    {
        arb_indeterminate(res);
        return;
    }

    asymp_accuracy = 2 * fmpz_bits(n);
    asymp_accuracy = FLINT_MIN(asymp_accuracy, prec);

    gram_point_initial(res, n, asymp_accuracy + 20);
    asymp_accuracy = arb_rel_accuracy_bits(res);

    if (asymp_accuracy < prec)
    {
        acb_struct tmp[2];
        arb_t f, fprime, root;
        mag_t C, r;
        slong * steps;
        slong wp, step;

        acb_init(tmp);
        acb_init(tmp + 1);
        arb_init(f);
        arb_init(fprime);
        arb_init(root);
        mag_init(C);
        mag_init(r);
        steps = flint_malloc(sizeof(slong) * FLINT_BITS);

        step = 0;
        steps[step] = prec * 1.05 + 10;

        while (steps[step] / 2 > asymp_accuracy)
        {
            steps[step + 1] = steps[step] / 2;
            step++;
        }

        arb_set(root, res);

        /* theta''(x) <= C = 1/x, x >= 1 */
        arb_get_mag_lower(C, root);
        if (mag_cmp_2exp_si(C, 0) >= 0)
            mag_inv(C, C);
        else
            mag_inf(C);

        arb_set(root, res);

        for ( ; step >= 0; step--)
        {
            wp = steps[step] + 10;
            wp = FLINT_MAX(wp, arb_rel_accuracy_bits(root) + 10);

            /* store radius, set root to the midpoint */
            mag_set(r, arb_radref(root));
            mag_zero(arb_radref(root));

            acb_set_arb(tmp, root);
            acb_dirichlet_hardy_theta(tmp, tmp, NULL, NULL, 2, wp);
            arb_set(f, acb_realref(tmp));
            arb_const_pi(acb_imagref(tmp), wp);
            arb_submul_fmpz(f, acb_imagref(tmp), n, wp);

            arb_set(fprime, acb_realref(tmp + 1));

            /* f'([m+/-r]) = f'(m) +/- f''([m +/- r]) * r */
            mag_mul(r, C, r);
            arb_add_error_mag(fprime, r);
            arb_div(f, f, fprime, wp);
            arb_sub(root, root, f, wp);

            /* Verify inclusion so that C is still valid. */
            if (!arb_contains(res, root))
            {
                flint_printf("unexpected: no containment computing Gram point\n");
                arb_set(root, res);
                break;
            }
        }

        arb_set(res, root);

        acb_clear(tmp);
        acb_clear(tmp + 1);
        arb_clear(f);
        arb_clear(fprime);
        arb_clear(root);
        mag_clear(C);
        mag_clear(r);
        flint_free(steps);
    }

    arb_set_round(res, res, prec);
}