File: l_euler_product.c

package info (click to toggle)
flint-arb 1%3A2.19.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 13,028 kB
  • sloc: ansic: 177,109; sh: 553; makefile: 288; python: 268
file content (157 lines) | stat: -rw-r--r-- 4,077 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
/*
    Copyright (C) 2016 Fredrik Johansson

    This file is part of Arb.

    Arb is free software: you can redistribute it and/or modify it under
    the terms of the GNU Lesser General Public License (LGPL) as published
    by the Free Software Foundation; either version 2.1 of the License, or
    (at your option) any later version.  See <http://www.gnu.org/licenses/>.
*/

#include "acb_dirichlet.h"

#define ONE_OVER_LOG2 1.4426950408889634

void
acb_dirichlet_l_euler_product(acb_t res, const acb_t s,
    const dirichlet_group_t G, const dirichlet_char_t chi, slong prec)
{
    arf_t left;
    slong wp, powprec, left_s, acc;
    ulong val, p, p_limit;
    double p_needed_approx, powmag, logp, errmag;
    int is_real, is_int;
    acb_t t, u, v, c, negs;
    acb_dirichlet_roots_t roots;
    mag_t err;

    if (!acb_is_finite(s))
    {
        acb_indeterminate(res);
        return;
    }

    arf_init(left);
    arf_set_mag(left, arb_radref(acb_realref(s)));
    arf_sub(left, arb_midref(acb_realref(s)), left, 2 * MAG_BITS, ARF_RND_FLOOR);

    /* Require re(s) >= 2. */
    if (arf_cmp_si(left, 2) < 0)
    {
        acb_indeterminate(res);
        arf_clear(left);
        return;
    }

    is_real = acb_is_real(s) && dirichlet_char_is_real(G, chi);

    /* L(s) ~= 1. */
    if (arf_cmp_si(left, prec) > 0)
    {
        acb_one(res);
        mag_hurwitz_zeta_uiui(arb_radref(acb_realref(res)), prec, 2);
        if (!is_real)
            mag_set(arb_radref(acb_imagref(res)), arb_radref(acb_realref(res)));
        acb_inv(res, res, prec);
        arf_clear(left);
        return;
    }

    left_s = arf_get_si(left, ARF_RND_FLOOR);

    /* Adjust precision based on possible accuracy. */
    acc = acb_rel_accuracy_bits(s);
    acc = FLINT_MAX(acc, 0);
    acc = FLINT_MIN(acc, prec);
    acc += left_s;
    prec = FLINT_MIN(prec, acc + 10);

    /* Heuristic. */
    wp = prec + FLINT_BIT_COUNT(prec) + (prec / left_s) + 4;

    /* Don't work too hard if a small s was passed as input. */
    p_limit = 100 + prec * sqrt(prec);

    /* Truncating at p ~= 2^(prec/s) gives an error of 2^-prec */
    if (((double) prec) / left_s > 50.0)
        p_needed_approx = pow(2.0, 50.0);
    else
        p_needed_approx = pow(2.0, ((double) prec) / left_s);

    p_needed_approx = FLINT_MIN(p_limit, p_needed_approx);

    /* todo: use exponent of chi instead of G? */
    acb_dirichlet_roots_init(roots, G->expo,
        p_needed_approx / (1.0 + log(p_needed_approx)), wp);

    acb_init(t);
    acb_init(u);
    acb_init(v);
    acb_init(c);
    acb_init(negs);

    is_int = acb_is_int(s);

    acb_neg(negs, s);
    acb_one(v);

    for (p = 2; p < p_limit; p = n_nextprime(p, 1))
    {
        /* p^s */
        logp = log(p);
        powmag = left_s * logp * ONE_OVER_LOG2;

        /* zeta(s,p) ~= 1/p^s + 1/((s-1) p^(s-1)) */
        errmag = (log(left_s - 1.0) + (left_s - 1.0) * logp) * ONE_OVER_LOG2;
        errmag = FLINT_MIN(powmag, errmag);

        if (errmag > prec + 2)
            break;

        powprec = FLINT_MAX(wp - powmag, 8);

        val = dirichlet_chi(G, chi, p);

        if (val != DIRICHLET_CHI_NULL)
        {
            acb_dirichlet_root(c, roots, val, powprec);
            acb_set_ui(t, p);

            if (is_int)
            {
                acb_pow(t, t, s, powprec);
                acb_set_round(u, v, powprec);
                acb_div(t, u, t, powprec);
            }
            else
            {
                acb_pow(t, t, negs, powprec);
                acb_set_round(u, v, powprec);
                acb_mul(t, u, t, powprec);
            }

            acb_mul(t, t, c, powprec);
            acb_sub(v, v, t, wp);
        }
    }

    mag_init(err);
    mag_hurwitz_zeta_uiui(err, left_s, p);
    if (is_real)
        arb_add_error_mag(acb_realref(v), err);
    else
        acb_add_error_mag(v, err);
    mag_clear(err);

    acb_inv(res, v, prec);

    acb_dirichlet_roots_clear(roots);
    acb_clear(t);
    acb_clear(u);
    acb_clear(v);
    acb_clear(c);
    acb_clear(negs);
    arf_clear(left);
}