1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
/*
Copyright (C) 2016 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "acb_dirichlet.h"
/* Laurent expansions at s = 1 of first 10 principal L-functions */
/* with mpmath:
chis = [[1],[0,1],[0,1,1],[0,1,0,1],[0,1,1,1,1],[0,1,0,0,0,1],[0,1,1,1,1,1,1],
[0,1,0,1,0,1,0,1],[0,1,1,0,1,1,0,1,1],[0,1,0,1,0,0,0,1,0,1]]
mp.dps = 40
for chi in chis:
phi = chi.count(1); q = len(chi)
L = lambda s: dirichlet(s, chi) - phi/((s-1)*q)
c0 = taylor(L, 1, 0, method="quad")
c1 = taylor(L, 1, 5, singular=True)[1:]
for c in c0 + c1:
print nstr(c, 20) + ",",
print
*/
#define TESTQ 10
#define TESTLEN 6
static const double laurent_data[TESTQ][TESTLEN] = {
{0.57721566490153286061, 0.072815845483676724861, -0.0048451815964361592423,
-0.00034230573671722431103, 0.000096890419394470835728, -6.6110318108421891813e-6},
{0.63518142273073908501, 0.11634237461305384831, -0.018765738937942729408,
0.00061334298434914532242, 0.00042338142025747308027, -0.00010545096447379519004},
{0.7510145394903918042, 0.058764477744540050414, -0.019011359100973296683,
0.0056382252365739175151, -0.0009550480622176659462, 0.000021808301216554848718},
{0.63518142273073908501, 0.11634237461305384831, -0.018765738937942729408,
0.00061334298434914532242, 0.00042338142025747308027, -0.00010545096447379519004},
{0.78366011440804636341, -0.014977808062405260803, 0.0090104707969118845102,
0.003603799084856807634, -0.0029351216034181476022, 0.00093077685173004747355},
{0.60655632993184433857, 0.2095885418562151802, -0.060844893711330538429,
0.0068080382961291386117, 0.0022236616427578346453, -0.0013581825996235430782},
{0.77274344835207292411, -0.047596894381510269689, 0.035406039531261788462,
-0.0054159870134630085898, -0.0019749752308692423114, 0.0014492998471928196325},
{0.63518142273073908501, 0.11634237461305384831, -0.018765738937942729408,
0.00061334298434914532242, 0.00042338142025747308027, -0.00010545096447379519004},
{0.7510145394903918042, 0.058764477744540050414, -0.019011359100973296683,
0.0056382252365739175151, -0.0009550480622176659462, 0.000021808301216554848718},
{0.66908892942800130547, 0.16801639259476784034, -0.072611999814034642781,
0.024624650443138705595, -0.004951850872731033514, -0.00020178815459414925709}
};
int main()
{
slong iter;
flint_rand_t state;
flint_printf("l_jet....");
fflush(stdout);
flint_randinit(state);
/* test Laurent series at s = 1 */
{
acb_t s, t;
dirichlet_group_t G;
dirichlet_char_t chi;
acb_ptr vec;
ulong q;
slong i;
acb_init(s);
acb_init(t);
vec = _acb_vec_init(TESTLEN);
acb_one(s);
for (q = 1; q <= TESTQ; q++)
{
dirichlet_group_init(G, q);
dirichlet_char_init(chi, G);
acb_dirichlet_l_jet(vec, s, G, chi, 1, TESTLEN, 100);
for (i = 0; i < TESTLEN; i++)
{
acb_set_d(t, laurent_data[q - 1][i]);
mag_set_d(arb_radref(acb_realref(t)),
fabs(laurent_data[q - 1][i]) * 1e-14);
if (!acb_overlaps(vec + i, t))
{
flint_printf("FAIL: Laurent series\n\n");
flint_printf("q = %wu i = %wd\n\n", q, i);
flint_printf("r1 = "); acb_printn(vec + i, 50, 0); flint_printf("\n\n");
flint_printf("r2 = "); acb_printn(t, 50, 0); flint_printf("\n\n");
flint_abort();
}
}
dirichlet_char_clear(chi);
dirichlet_group_clear(G);
}
acb_clear(s);
acb_clear(t);
_acb_vec_clear(vec, TESTLEN);
}
/* test self-consistency */
for (iter = 0; iter < 1000 * arb_test_multiplier(); iter++)
{
acb_t s;
dirichlet_group_t G;
dirichlet_char_t chi;
acb_ptr vec1, vec2;
slong len1, len2;
slong prec1, prec2;
int deflate1, deflate2;
ulong q, k;
slong i;
len1 = n_randint(state, 5);
len2 = n_randint(state, 5);
prec1 = 2 + n_randint(state, 100);
prec2 = 2 + n_randint(state, 100);
deflate1 = n_randint(state, 2);
deflate2 = n_randint(state, 2);
q = 1 + n_randint(state, 20);
k = n_randint(state, n_euler_phi(q));
dirichlet_group_init(G, q);
dirichlet_char_init(chi, G);
dirichlet_char_index(chi, G, k);
acb_init(s);
vec1 = _acb_vec_init(len1);
vec2 = _acb_vec_init(len2);
if (n_randint(state, 4) == 0)
acb_one(s);
else
acb_randtest(s, state, 2 + n_randint(state, 200), 2);
acb_dirichlet_l_jet(vec1, s, G, chi, deflate1, len1, prec1);
acb_dirichlet_l_jet(vec2, s, G, chi, deflate2, len2, prec2);
if (deflate1 != deflate2 && dirichlet_char_is_principal(G, chi))
{
/* add or subtract phi(q)/((s+x-1)q) */
acb_t t, u;
acb_init(t);
acb_init(u);
acb_set_ui(t, n_euler_phi(q));
acb_div_ui(t, t, q, prec1);
acb_sub_ui(u, s, 1, prec1);
for (i = 0; i < len1; i++)
{
acb_div(t, t, u, prec1);
if (deflate1)
acb_add(vec1 + i, vec1 + i, t, prec1);
else
acb_sub(vec1 + i, vec1 + i, t, prec1);
acb_neg(t, t);
}
acb_clear(t);
acb_clear(u);
}
for (i = 0; i < FLINT_MIN(len1, len2); i++)
{
if (!acb_overlaps(vec1 + i, vec2 + i))
{
flint_printf("FAIL: overlap\n\n");
flint_printf("iter = %wd q = %wu k = %wu i = %wd\n\n", iter, q, k, i);
flint_printf("s = "); acb_printn(s, 50, 0); flint_printf("\n\n");
flint_printf("r1 = "); acb_printn(vec1 + i, 50, 0); flint_printf("\n\n");
flint_printf("r2 = "); acb_printn(vec2 + i, 50, 0); flint_printf("\n\n");
flint_abort();
}
}
dirichlet_char_clear(chi);
dirichlet_group_clear(G);
acb_clear(s);
_acb_vec_clear(vec1, len1);
_acb_vec_clear(vec2, len2);
}
flint_randclear(state);
flint_cleanup();
flint_printf("PASS\n");
return EXIT_SUCCESS;
}
|