File: t-l_jet.c

package info (click to toggle)
flint-arb 1%3A2.19.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 13,028 kB
  • sloc: ansic: 177,109; sh: 553; makefile: 288; python: 268
file content (201 lines) | stat: -rw-r--r-- 6,851 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
/*
    Copyright (C) 2016 Fredrik Johansson

    This file is part of Arb.

    Arb is free software: you can redistribute it and/or modify it under
    the terms of the GNU Lesser General Public License (LGPL) as published
    by the Free Software Foundation; either version 2.1 of the License, or
    (at your option) any later version.  See <http://www.gnu.org/licenses/>.
*/

#include "acb_dirichlet.h"

/* Laurent expansions at s = 1 of first 10 principal L-functions */

/* with mpmath:
chis = [[1],[0,1],[0,1,1],[0,1,0,1],[0,1,1,1,1],[0,1,0,0,0,1],[0,1,1,1,1,1,1],
 [0,1,0,1,0,1,0,1],[0,1,1,0,1,1,0,1,1],[0,1,0,1,0,0,0,1,0,1]]

mp.dps = 40
for chi in chis:
    phi = chi.count(1); q = len(chi)
    L = lambda s: dirichlet(s, chi) - phi/((s-1)*q)
    c0 = taylor(L, 1, 0, method="quad")
    c1 = taylor(L, 1, 5, singular=True)[1:]
    for c in c0 + c1:
        print nstr(c, 20) + ",",
    print
*/

#define TESTQ 10
#define TESTLEN 6

static const double laurent_data[TESTQ][TESTLEN] = {
    {0.57721566490153286061, 0.072815845483676724861, -0.0048451815964361592423,
        -0.00034230573671722431103, 0.000096890419394470835728, -6.6110318108421891813e-6},
    {0.63518142273073908501, 0.11634237461305384831, -0.018765738937942729408,
        0.00061334298434914532242, 0.00042338142025747308027, -0.00010545096447379519004},
    {0.7510145394903918042, 0.058764477744540050414, -0.019011359100973296683,
        0.0056382252365739175151, -0.0009550480622176659462, 0.000021808301216554848718},
    {0.63518142273073908501, 0.11634237461305384831, -0.018765738937942729408,
        0.00061334298434914532242, 0.00042338142025747308027, -0.00010545096447379519004},
    {0.78366011440804636341, -0.014977808062405260803, 0.0090104707969118845102,
        0.003603799084856807634, -0.0029351216034181476022, 0.00093077685173004747355},
    {0.60655632993184433857, 0.2095885418562151802, -0.060844893711330538429,
        0.0068080382961291386117, 0.0022236616427578346453, -0.0013581825996235430782},
    {0.77274344835207292411, -0.047596894381510269689, 0.035406039531261788462,
        -0.0054159870134630085898, -0.0019749752308692423114, 0.0014492998471928196325},
    {0.63518142273073908501, 0.11634237461305384831, -0.018765738937942729408,
        0.00061334298434914532242, 0.00042338142025747308027, -0.00010545096447379519004},
    {0.7510145394903918042, 0.058764477744540050414, -0.019011359100973296683,
        0.0056382252365739175151, -0.0009550480622176659462, 0.000021808301216554848718},
    {0.66908892942800130547, 0.16801639259476784034, -0.072611999814034642781,
        0.024624650443138705595, -0.004951850872731033514, -0.00020178815459414925709}
};

int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("l_jet....");
    fflush(stdout);

    flint_randinit(state);

    /* test Laurent series at s = 1 */
    {
        acb_t s, t;
        dirichlet_group_t G;
        dirichlet_char_t chi;
        acb_ptr vec;
        ulong q;
        slong i;

        acb_init(s);
        acb_init(t);
        vec = _acb_vec_init(TESTLEN);

        acb_one(s);
        for (q = 1; q <= TESTQ; q++)
        {
            dirichlet_group_init(G, q);
            dirichlet_char_init(chi, G);

            acb_dirichlet_l_jet(vec, s, G, chi, 1, TESTLEN, 100);

            for (i = 0; i < TESTLEN; i++)
            {
                acb_set_d(t, laurent_data[q - 1][i]);
                mag_set_d(arb_radref(acb_realref(t)),
                    fabs(laurent_data[q - 1][i]) * 1e-14);

                if (!acb_overlaps(vec + i, t))
                {
                    flint_printf("FAIL: Laurent series\n\n");
                    flint_printf("q = %wu  i = %wd\n\n", q, i);
                    flint_printf("r1 = "); acb_printn(vec + i, 50, 0); flint_printf("\n\n");
                    flint_printf("r2 = "); acb_printn(t, 50, 0); flint_printf("\n\n");
                    flint_abort();
                }
            }

            dirichlet_char_clear(chi);
            dirichlet_group_clear(G);
        }

        acb_clear(s);
        acb_clear(t);
        _acb_vec_clear(vec, TESTLEN);
    }

    /* test self-consistency */
    for (iter = 0; iter < 1000 * arb_test_multiplier(); iter++)
    {
        acb_t s;
        dirichlet_group_t G;
        dirichlet_char_t chi;
        acb_ptr vec1, vec2;
        slong len1, len2;
        slong prec1, prec2;
        int deflate1, deflate2;
        ulong q, k;
        slong i;

        len1 = n_randint(state, 5);
        len2 = n_randint(state, 5);
        prec1 = 2 + n_randint(state, 100);
        prec2 = 2 + n_randint(state, 100);
        deflate1 = n_randint(state, 2);
        deflate2 = n_randint(state, 2);
        q = 1 + n_randint(state, 20);
        k = n_randint(state, n_euler_phi(q));

        dirichlet_group_init(G, q);
        dirichlet_char_init(chi, G);
        dirichlet_char_index(chi, G, k);

        acb_init(s);
        vec1 = _acb_vec_init(len1);
        vec2 = _acb_vec_init(len2);

        if (n_randint(state, 4) == 0)
            acb_one(s);
        else
            acb_randtest(s, state, 2 + n_randint(state, 200), 2);

        acb_dirichlet_l_jet(vec1, s, G, chi, deflate1, len1, prec1);
        acb_dirichlet_l_jet(vec2, s, G, chi, deflate2, len2, prec2);

        if (deflate1 != deflate2 && dirichlet_char_is_principal(G, chi))
        {
            /* add or subtract phi(q)/((s+x-1)q) */
            acb_t t, u;
            acb_init(t);
            acb_init(u);

            acb_set_ui(t, n_euler_phi(q));
            acb_div_ui(t, t, q, prec1);
            acb_sub_ui(u, s, 1, prec1);

            for (i = 0; i < len1; i++)
            {
                acb_div(t, t, u, prec1);
                if (deflate1)
                    acb_add(vec1 + i, vec1 + i, t, prec1);
                else
                    acb_sub(vec1 + i, vec1 + i, t, prec1);
                acb_neg(t, t);
            }

            acb_clear(t);
            acb_clear(u);
        }

        for (i = 0; i < FLINT_MIN(len1, len2); i++)
        {
            if (!acb_overlaps(vec1 + i, vec2 + i))
            {
                flint_printf("FAIL: overlap\n\n");
                flint_printf("iter = %wd  q = %wu  k = %wu  i = %wd\n\n", iter, q, k, i);
                flint_printf("s = "); acb_printn(s, 50, 0); flint_printf("\n\n");
                flint_printf("r1 = "); acb_printn(vec1 + i, 50, 0); flint_printf("\n\n");
                flint_printf("r2 = "); acb_printn(vec2 + i, 50, 0); flint_printf("\n\n");
                flint_abort();
            }
        }

        dirichlet_char_clear(chi);
        dirichlet_group_clear(G);
        acb_clear(s);
        _acb_vec_clear(vec1, len1);
        _acb_vec_clear(vec2, len2);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}