1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
/*
Copyright (C) 2020 D.H.J. Polymath
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "acb_dirichlet.h"
static void
_arb_div_si_si(arb_t res, slong a, slong b, slong prec)
{
arb_set_si(res, a);
arb_div_si(res, res, b, prec);
}
static int
_arb_vec_overlaps(arb_srcptr a, arb_srcptr b, slong len)
{
slong i;
for (i = 0; i < len; i++)
{
if (!arb_overlaps(a + i, b + i))
{
return 0;
}
}
return 1;
}
int main()
{
slong iter;
flint_rand_t state;
flint_printf("platt_multieval_threaded....");
fflush(stdout);
flint_randinit(state);
/* Check a specific combination of parameter values that is relatively fast
* to evaluate and that has relatively tight bounds. */
{
slong A = 8;
slong B = 128;
slong N = A*B;
slong J = 1000;
slong K = 30;
slong sigma = 63;
slong prec = 128;
fmpz_t T;
arb_t h;
arb_ptr vec;
arb_init(h);
fmpz_init(T);
fmpz_set_si(T, 10000);
arb_set_d(h, 4.5);
flint_set_num_threads(5);
/* Check a few random entries in the multieval vector. */
vec = _arb_vec_init(N);
acb_dirichlet_platt_multieval_threaded(vec, T, A, B, h, J, K, sigma, prec);
for (iter = 0; iter < 20; iter++)
{
arb_t t, r;
slong i = n_randint(state, N);
slong n = i - N/2;
arb_init(t);
arb_init(r);
_arb_div_si_si(t, n, A, prec);
arb_add_fmpz(t, t, T, prec);
acb_dirichlet_platt_scaled_lambda(r, t, prec);
if (!arb_overlaps(vec + i, r))
{
flint_printf("FAIL: overlap for hardcoded example\n\n");
flint_printf("i = %wd n = %wd\n\n", i, n);
flint_printf("vec[%wd] = ", i); arb_printn(vec + i, 30, 0); flint_printf("\n\n");
flint_printf("r = "); arb_printn(r, 30, 0); flint_printf("\n\n");
flint_abort();
}
arb_clear(t);
arb_clear(r);
}
fmpz_clear(T);
arb_clear(h);
_arb_vec_clear(vec, N);
}
for (iter = 0; iter < 10 * arb_test_multiplier(); iter++)
{
slong prec;
ulong A, B, N, J, K;
slong sigma, Tbits;
fmpz_t T;
arb_t h;
arb_ptr v1, v2;
/* better but slower limits are in parentheses below */
prec = 2 + n_randint(state, 300);
sigma = 1 + 2*(1 + n_randint(state, 100)); /* (200) */
J = 1 + n_randint(state, 100); /* (10000) */
K = 1 + n_randint(state, 20); /* (50) */
A = 1 + n_randint(state, 10);
B = 1 + n_randint(state, 10); /* (500) */
if (n_randint(state, 2))
A *= 2;
else
B *= 2;
N = A*B;
fmpz_init(T);
Tbits = 5 + n_randint(state, 15);
fmpz_set_ui(T, n_randtest_bits(state, Tbits));
arb_init(h);
arb_set_si(h, 1 + n_randint(state, 20000));
arb_div_si(h, h, 1000, prec);
flint_set_num_threads(1 + n_randint(state, 5));
v1 = _arb_vec_init(N);
v2 = _arb_vec_init(N);
acb_dirichlet_platt_scaled_lambda_vec(v1, T, A, B, prec);
acb_dirichlet_platt_multieval_threaded(v2, T, A, B, h, J, K, sigma, prec);
if (!_arb_vec_overlaps(v1, v2, N))
{
flint_printf("FAIL: overlap\n\n");
flint_printf("iter = %wd prec = %wd\n\n", iter, prec);
flint_printf("sigma = %wd\n\n", sigma);
flint_printf("A = %wu B = %wu J = %wu K = %wu\n\n", A, B, J, K);
flint_printf("T = "); fmpz_print(T); flint_printf("\n\n");
flint_printf("h = "); arb_printn(h, 30, 0); flint_printf("\n\n");
flint_abort();
}
arb_clear(h);
fmpz_clear(T);
_arb_vec_clear(v1, N);
_arb_vec_clear(v2, N);
}
flint_randclear(state);
flint_cleanup();
flint_printf("PASS\n");
return EXIT_SUCCESS;
}
|