1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
/*
Copyright (C) 2016 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "acb_dirichlet.h"
static void
_mag_pow(mag_t res, const mag_t x, const mag_t y)
{
arb_t t, u;
arb_init(t);
arb_init(u);
arf_set_mag(arb_midref(t), x);
arf_set_mag(arb_midref(u), y);
arb_pow(t, t, u, 2 * MAG_BITS);
arb_get_mag(res, t);
arb_clear(t);
arb_clear(u);
}
/* zeta(1+s) < 1+1/s */
static void
mag_zeta1p(mag_t res, const mag_t s)
{
mag_t t;
mag_init(t);
mag_one(t);
mag_div(t, t, s);
mag_add_ui(res, t, 1);
mag_clear(t);
}
/* |zeta(s)| <= (2pi)^sigma |gamma(1-s)| exp(pi|t|/2) zeta(1-sigma) / pi */
void
acb_dirichlet_zeta_bound_functional_equation(mag_t res, const acb_t s)
{
slong prec, p;
acb_t z;
arb_t x;
mag_t t;
if (!arb_is_negative(acb_realref(s)))
{
mag_inf(res);
return;
}
acb_init(z);
arb_init(x);
mag_init(t);
prec = 0;
p = arf_abs_bound_lt_2exp_si(arb_midref(acb_imagref(s)));
prec = FLINT_MAX(p, prec);
p = arf_abs_bound_lt_2exp_si(arb_midref(acb_realref(s)));
prec = FLINT_MAX(p, prec);
/* we *could* increase the precision even further to return finite
results for huge input... but there's not much practical reason to... */
prec = FLINT_MIN(prec, 1000);
prec += MAG_BITS;
/* gamma(1-s) */
acb_sub_ui(z, s, 1, prec);
acb_neg(z, z);
acb_gamma(z, z, prec);
acb_get_mag(res, z);
/* (2pi)^sigma */
arb_const_pi(x, prec);
arb_mul_2exp_si(x, x, 1);
arb_pow(x, x, acb_realref(s), prec);
arb_get_mag(t, x);
mag_mul(res, res, t);
/* 1/pi */
mag_div_ui(res, res, 3);
/* exp(pi|t|/2) */
arb_const_pi(x, prec);
arb_mul(x, x, acb_imagref(s), prec);
arb_abs(x, x);
arb_mul_2exp_si(x, x, -1);
arb_exp(x, x, prec);
arb_get_mag(t, x);
mag_mul(res, res, t);
/* zeta(1-s) */
arb_neg(x, acb_realref(s));
arb_get_mag_lower(t, x);
mag_zeta1p(t, t);
mag_mul(res, res, t);
acb_clear(z);
arb_clear(x);
mag_clear(t);
}
/*
Rademacher 43.3:
Assume -eta <= sigma <= 1 + eta where 0 < eta <= 1/2. Then:
|zeta(s)| < 3 |(1+s)/(1-s)| |(1+s)/(2pi)|^e zeta(1+eta)
where e = (1+eta-sigma)/2. Inside the strip, we use this formula with
eta = 0.1 (this could be improved).
*/
void
acb_dirichlet_zeta_bound_strip(mag_t res, const acb_t s)
{
arf_t eta, a;
acb_t s1;
mag_t t, u, v;
acb_init(s1);
arf_init(eta);
arf_init(a);
mag_init(t);
mag_init(u);
mag_init(v);
/* We need -eta <= sigma <= 1 + eta where sigma = m +/- r,
i.e. eta >= max(-m, m-1) + r. */
arf_neg(eta, arb_midref(acb_realref(s)));
arf_sub_ui(a, arb_midref(acb_realref(s)), 1, MAG_BITS, ARF_RND_CEIL);
arf_max(eta, eta, a);
arf_set_mag(a, arb_radref(acb_realref(s)));
arf_add(eta, eta, a, MAG_BITS, ARF_RND_CEIL);
/* eta = max(eta, 0.1), to avoid the pole */
arf_set_d(a, 0.1);
arf_max(eta, eta, a);
/* Requires 0 <= eta <= 1/2. */
if (arf_cmpabs_2exp_si(eta, -1) <= 0)
{
/* t = |1+s|/(2pi) */
acb_add_ui(s1, s, 1, MAG_BITS);
acb_get_mag(t, s1);
mag_set_ui_2exp_si(u, 163, -10); /* 1/(2pi) < 163/1024 */
mag_mul(t, t, u);
/* a = (1+eta-sigma)/2 */
arf_set_mag(a, arb_radref(acb_realref(s)));
arf_add(a, eta, a, MAG_BITS, ARF_RND_CEIL);
arf_sub(a, a, arb_midref(acb_realref(s)), MAG_BITS, ARF_RND_CEIL);
arf_add_ui(a, a, 1, MAG_BITS, ARF_RND_CEIL);
arf_mul_2exp_si(a, a, -1);
if (arf_sgn(a) < 0)
arf_zero(a);
arf_get_mag(u, a);
/* t = (|1+s|/(2pi))^((1+eta-sigma)/2) */
_mag_pow(t, t, u);
/* 3|1+s|/|1-s| */
acb_get_mag(u, s1);
mag_mul(t, t, u);
acb_sub_ui(s1, s, 1, MAG_BITS);
acb_get_mag_lower(u, s1);
mag_div(t, t, u);
mag_mul_ui(t, t, 3);
/* zeta(1+eta) */
arf_get_mag_lower(u, eta);
mag_zeta1p(u, u);
mag_mul(t, t, u);
mag_set(res, t);
}
else
{
mag_inf(res);
}
acb_clear(s1);
arf_clear(eta);
arf_clear(a);
mag_clear(t);
mag_clear(u);
mag_clear(v);
}
/*
We have three cases: Rademacher's bound valid on -0.5 <= sigma <= 1.5, the
trivial bound on sigma > 1, and the functional equation valid on sigma < 0.
We intersect s with three separate domains for evaluation: right, inside,
and left of the extended strip [-0.25,1.25].
Sharper bounds could be used precisely when sigma = 1/2,
or very close to the line sigma = 1.
*/
void
acb_dirichlet_zeta_bound(mag_t res, const acb_t s)
{
arb_t strip;
mag_t t;
if (!acb_is_finite(s))
{
mag_inf(res);
return;
}
arb_init(strip);
mag_init(t);
arf_set_ui_2exp_si(arb_midref(strip), 1, -1);
mag_set_ui_2exp_si(arb_radref(strip), 3, -2);
if (arb_le(strip, acb_realref(s)))
{
arb_get_mag_lower(res, acb_realref(s));
mag_one(t);
mag_sub_lower(res, res, t);
mag_zeta1p(res, res);
}
else if (arb_contains(strip, acb_realref(s)))
{
acb_dirichlet_zeta_bound_strip(res, s);
}
else if (arb_le(acb_realref(s), strip))
{
acb_dirichlet_zeta_bound_functional_equation(res, s);
}
else
{
acb_t ss;
arf_t x1, x2;
acb_init(ss);
arf_init(x1);
arf_init(x2);
/* Since s overlaps at least two regions, it must certainly
overlap with the extended strip. */
arb_set(acb_imagref(ss), acb_imagref(s));
arb_intersection(acb_realref(ss), acb_realref(s), strip, MAG_BITS);
acb_dirichlet_zeta_bound_strip(res, ss);
/* We may have real parts > 1.25. */
/* The bound computed for the extended strip *should* already be
larger than zeta(1.25) < 5, but just to be sure... */
mag_set_ui(t, 5);
mag_max(res, res, t);
/* Finally, we may have have real parts < -0.25. */
arf_set_mag(x1, arb_radref(acb_realref(s)));
arf_sub(x1, arb_midref(acb_realref(s)), x1, MAG_BITS, ARF_RND_FLOOR);
arf_set_d(x2, -0.25);
if (arf_cmp(x1, x2) < 0)
{
arb_set_interval_arf(acb_realref(ss), x1, x2, MAG_BITS);
acb_dirichlet_zeta_bound_functional_equation(t, ss);
mag_max(res, res, t);
}
acb_clear(ss);
arf_clear(x1);
arf_clear(x2);
}
arb_clear(strip);
mag_clear(t);
}
/*
|f'(s)| <= |f(s +/- R)| / R
|f''(s)| <= 2 |f(s +/- R)| / R^2
*/
void
acb_dirichlet_zeta_deriv_bound(mag_t der1, mag_t der2, const acb_t s)
{
mag_t R, M;
acb_t t;
mag_init(R);
mag_init(M);
acb_init(t);
/* R = 1/8 */
mag_set_ui_2exp_si(R, 1, -3);
/* t = s +/- R */
acb_set(t, s);
mag_add(arb_radref(acb_realref(t)), arb_radref(acb_realref(t)), R);
mag_add(arb_radref(acb_imagref(t)), arb_radref(acb_imagref(t)), R);
/* M = |f(s +/- R)| */
acb_dirichlet_zeta_bound(M, t);
/* der1 = |f'(s)| */
mag_div(der1, M, R);
/* der2 = |f''(s)| */
mag_div(der2, der1, R);
mag_mul_2exp_si(der2, der2, 1);
acb_clear(t);
mag_clear(R);
mag_clear(M);
}
|