1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
/*
Copyright (C) 2018 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "acb_mat.h"
static void
acb_approx_mul(acb_t res, const acb_t x, const acb_t y, slong prec)
{
arf_complex_mul(arb_midref(acb_realref(res)), arb_midref(acb_imagref(res)),
arb_midref(acb_realref(x)), arb_midref(acb_imagref(x)),
arb_midref(acb_realref(y)), arb_midref(acb_imagref(y)), prec, ARB_RND);
}
/* note: the tmp variable t should have zero radius */
static void
acb_approx_div(acb_t z, const acb_t x, const acb_t y, acb_t t, slong prec)
{
arf_set(arb_midref(acb_realref(t)), arb_midref(acb_realref(y)));
arf_set(arb_midref(acb_imagref(t)), arb_midref(acb_imagref(y)));
acb_inv(t, t, prec);
mag_zero(arb_radref(acb_realref(t)));
mag_zero(arb_radref(acb_imagref(t)));
acb_approx_mul(z, x, t, prec);
}
void
acb_mat_approx_solve_triu_classical(acb_mat_t X, const acb_mat_t U,
const acb_mat_t B, int unit, slong prec)
{
slong i, j, n, m;
acb_ptr tmp;
acb_t s, t;
n = U->r;
m = B->c;
acb_init(s);
acb_init(t);
tmp = flint_malloc(sizeof(acb_struct) * n);
for (i = 0; i < m; i++)
{
for (j = 0; j < n; j++)
tmp[j] = *acb_mat_entry(X, j, i);
for (j = n - 1; j >= 0; j--)
{
acb_approx_dot(s, acb_mat_entry(B, j, i), 1, U->rows[j] + j + 1, 1, tmp + j + 1, 1, n - j - 1, prec);
if (!unit)
acb_approx_div(tmp + j, s, arb_mat_entry(U, j, j), t, prec);
else
acb_swap(tmp + j, s);
}
for (j = 0; j < n; j++)
*acb_mat_entry(X, j, i) = tmp[j];
}
flint_free(tmp);
acb_clear(s);
acb_clear(t);
}
void
acb_mat_approx_solve_triu_recursive(acb_mat_t X,
const acb_mat_t U, const acb_mat_t B, int unit, slong prec)
{
acb_mat_t UA, UB, UD, XX, XY, BX, BY, T;
slong r, n, m;
n = U->r;
m = B->c;
r = n / 2;
if (n == 0 || m == 0)
return;
/*
Denoting inv(M) by M^, we have:
[A B]^ [X] == [A^ (X - B D^ Y)]
[0 D] [Y] == [ D^ Y ]
*/
acb_mat_window_init(UA, U, 0, 0, r, r);
acb_mat_window_init(UB, U, 0, r, r, n);
acb_mat_window_init(UD, U, r, r, n, n);
acb_mat_window_init(BX, B, 0, 0, r, m);
acb_mat_window_init(BY, B, r, 0, n, m);
acb_mat_window_init(XX, X, 0, 0, r, m);
acb_mat_window_init(XY, X, r, 0, n, m);
acb_mat_approx_solve_triu(XY, UD, BY, unit, prec);
acb_mat_init(T, UB->r, XY->c);
acb_mat_approx_mul(T, UB, XY, prec);
acb_mat_sub(XX, BX, T, prec);
acb_mat_get_mid(XX, XX);
acb_mat_clear(T);
acb_mat_approx_solve_triu(XX, UA, XX, unit, prec);
acb_mat_window_clear(UA);
acb_mat_window_clear(UB);
acb_mat_window_clear(UD);
acb_mat_window_clear(BX);
acb_mat_window_clear(BY);
acb_mat_window_clear(XX);
acb_mat_window_clear(XY);
}
void
acb_mat_approx_solve_triu(acb_mat_t X, const acb_mat_t U,
const acb_mat_t B, int unit, slong prec)
{
if (B->r < 40 || B->c < 40)
acb_mat_approx_solve_triu_classical(X, U, B, unit, prec);
else
acb_mat_approx_solve_triu_recursive(X, U, B, unit, prec);
}
|