1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
/*
Copyright (C) 2012 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "acb_mat.h"
slong
acb_mat_gauss_partial(acb_mat_t A, slong prec)
{
acb_t e;
acb_ptr * a;
slong j, m, n, r, rank, row, col, sign;
m = A->r;
n = A->c;
a = A->rows;
rank = row = col = 0;
sign = 1;
acb_init(e);
while (row < m && col < n)
{
r = acb_mat_find_pivot_partial(A, row, m, col);
if (r == -1)
{
break;
}
else if (r != row)
{
acb_mat_swap_rows(A, NULL, row, r);
sign *= -1;
}
rank++;
for (j = row + 1; j < m; j++)
{
acb_div(e, a[j] + col, a[row] + col, prec);
acb_neg(e, e);
_acb_vec_scalar_addmul(a[j] + col + 1, a[row] + col + 1, n - col - 1, e, prec);
}
row++;
col++;
}
acb_clear(e);
return rank * sign;
}
void
acb_vec_get_arf_2norm_squared_bound(arf_t s, acb_srcptr vec, slong len, slong prec)
{
slong i;
arf_t t;
arf_init(t);
arf_zero(s);
for (i = 0; i < len; i++)
{
arb_get_abs_ubound_arf(t, acb_realref(vec + i), prec);
arf_addmul(s, t, t, prec, ARF_RND_UP);
arb_get_abs_ubound_arf(t, acb_imagref(vec + i), prec);
arf_addmul(s, t, t, prec, ARF_RND_UP);
}
arf_clear(t);
}
void
acb_mat_det_lu_inplace(acb_t det, acb_mat_t A, slong prec)
{
slong i, n, sign, rank;
int is_real;
n = acb_mat_nrows(A);
rank = acb_mat_gauss_partial(A, prec);
sign = (rank < 0) ? -1 : 1;
rank = FLINT_ABS(rank);
_acb_mat_diag_prod(det, A, 0, rank, prec);
acb_mul_si(det, det, sign, prec);
/* bound unreduced part using Hadamard's inequality */
if (rank < n)
{
arf_t t;
arf_t d;
acb_t e;
arf_init(t);
arf_init(d);
acb_init(e);
arf_one(d);
is_real = acb_mat_is_real(A);
for (i = rank; i < n; i++)
{
acb_vec_get_arf_2norm_squared_bound(t, A->rows[i] + rank, n - rank, MAG_BITS);
arf_mul(d, d, t, MAG_BITS, ARF_RND_UP);
}
/* now d contains the absolute value of the determinant */
arf_sqrt(d, d, MAG_BITS, ARF_RND_UP);
/* multiply by disc with radius d */
if (is_real)
{
arb_add_error_arf(acb_realref(e), d);
}
else
{
arb_add_error_arf(acb_realref(e), d);
arb_add_error_arf(acb_imagref(e), d);
}
acb_mul(det, det, e, prec);
acb_clear(e);
arf_clear(d);
arf_clear(t);
}
}
void
acb_mat_det_lu(acb_t det, const acb_mat_t A, slong prec)
{
slong n;
n = acb_mat_nrows(A);
if (n == 0)
{
acb_one(det);
}
else
{
acb_mat_t T;
acb_mat_init(T, acb_mat_nrows(A), acb_mat_ncols(A));
acb_mat_set(T, A);
acb_mat_det_lu_inplace(det, T, prec);
acb_mat_clear(T);
}
}
|