1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
/*
Copyright (C) 2012 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "flint/double_extras.h"
#include "acb_mat.h"
#include "bool_mat.h"
slong _arb_mat_exp_choose_N(const mag_t norm, slong prec);
static slong
_acb_mat_count_is_zero(const acb_mat_t A)
{
slong nz, i, j;
for (nz = 0, i = 0; i < acb_mat_nrows(A); i++)
for (j = 0; j < acb_mat_ncols(A); j++)
nz += acb_is_zero(acb_mat_entry(A, i, j));
return nz;
}
static void
_acb_mat_exp_diagonal(acb_mat_t B, const acb_mat_t A, slong prec)
{
slong n, i;
n = acb_mat_nrows(A);
if (B != A)
{
acb_mat_zero(B);
}
for (i = 0; i < n; i++)
{
acb_exp(acb_mat_entry(B, i, i), acb_mat_entry(A, i, i), prec);
}
}
void
acb_mat_exp(acb_mat_t B, const acb_mat_t A, slong prec)
{
slong i, j, dim, nz;
bool_mat_t S;
slong nildegree;
if (!acb_mat_is_square(A))
{
flint_printf("acb_mat_exp: a square matrix is required!\n");
flint_abort();
}
if (acb_mat_is_empty(A))
return;
dim = acb_mat_nrows(A);
if (dim == 1)
{
acb_exp(acb_mat_entry(B, 0, 0), acb_mat_entry(A, 0, 0), prec);
return;
}
if (acb_mat_is_real(A))
{
arb_mat_t R;
arb_mat_init(R, dim, dim);
for (i = 0; i < dim; i++)
for (j = 0; j < dim; j++)
arb_set(arb_mat_entry(R, i, j),
acb_realref(acb_mat_entry(A, i, j)));
arb_mat_exp(R, R, prec);
acb_mat_set_arb_mat(B, R);
arb_mat_clear(R);
return;
}
nz = _acb_mat_count_is_zero(A);
if (nz == dim * dim)
{
acb_mat_one(B);
return;
}
bool_mat_init(S, dim, dim);
if (nz == 0)
{
nildegree = -1;
bool_mat_complement(S, S);
}
else
{
for (i = 0; i < dim; i++)
for (j = 0; j < dim; j++)
bool_mat_set_entry(S, i, j, !acb_is_zero(acb_mat_entry(A, i, j)));
if (bool_mat_is_diagonal(S))
{
_acb_mat_exp_diagonal(B, A, prec);
bool_mat_clear(S);
return;
}
else
{
nildegree = bool_mat_nilpotency_degree(S);
}
}
/* evaluate using scaling and squaring of truncated taylor series */
{
slong wp, N, q, r;
mag_t norm, err;
acb_mat_t T;
wp = prec + 3 * FLINT_BIT_COUNT(prec);
mag_init(norm);
mag_init(err);
acb_mat_init(T, dim, dim);
acb_mat_bound_inf_norm(norm, A);
q = pow(wp, 0.25); /* wanted magnitude */
if (mag_cmp_2exp_si(norm, 2 * wp) > 0) /* too big */
r = 2 * wp;
else if (mag_cmp_2exp_si(norm, -q) < 0) /* tiny, no need to reduce */
r = 0;
else
r = FLINT_MAX(0, q + MAG_EXP(norm)); /* reduce to magnitude 2^(-r) */
acb_mat_scalar_mul_2exp_si(T, A, -r);
mag_mul_2exp_si(norm, norm, -r);
N = _arb_mat_exp_choose_N(norm, wp);
/* if positive, nildegree is an upper bound on nilpotency degree */
if (nildegree > 0)
N = FLINT_MIN(N, nildegree);
mag_exp_tail(err, norm, N);
acb_mat_exp_taylor_sum(B, T, N, wp);
/* add truncation error to entries for which it is not ruled out */
if (nz == 0)
{
for (i = 0; i < dim; i++)
for (j = 0; j < dim; j++)
acb_add_error_mag(acb_mat_entry(B, i, j), err);
}
else if (nildegree < 0 || N < nildegree)
{
slong w;
fmpz_mat_t W;
fmpz_mat_init(W, dim, dim);
w = bool_mat_all_pairs_longest_walk(W, S);
if (w + 1 != nildegree) flint_abort(); /* assert */
for (i = 0; i < dim; i++)
{
for (j = 0; j < dim; j++)
{
slong d = fmpz_get_si(fmpz_mat_entry(W, i, j)) + 1;
if (d < 0 || N < d)
{
acb_add_error_mag(acb_mat_entry(B, i, j), err);
}
}
}
fmpz_mat_clear(W);
}
for (i = 0; i < r; i++)
{
acb_mat_sqr(T, B, wp);
acb_mat_swap(T, B);
}
for (i = 0; i < dim; i++)
for (j = 0; j < dim; j++)
acb_set_round(acb_mat_entry(B, i, j),
acb_mat_entry(B, i, j), prec);
mag_clear(norm);
mag_clear(err);
acb_mat_clear(T);
}
bool_mat_clear(S);
}
|