1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
/*
Copyright (C) 2012 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "acb_mat.h"
int fmpq_mat_is_invertible(const fmpq_mat_t A)
{
int r;
fmpq_t t;
fmpq_init(t);
fmpq_mat_det(t, A);
r = !fmpq_is_zero(t);
fmpq_clear(t);
return r;
}
int main()
{
slong iter;
flint_rand_t state;
flint_printf("lu_recursive....");
fflush(stdout);
flint_randinit(state);
/* Dummy test with rectangular matrices. Rectangular matrices are
not actually supported (the output may be bogus), but the algorithm
should at least not crash. */
for (iter = 0; iter < 1000 * arb_test_multiplier(); iter++)
{
slong m, n, prec;
slong *perm;
acb_mat_t A, LU;
n = n_randint(state, 20);
m = n_randint(state, 20);
prec = 2 + n_randint(state, 200);
acb_mat_init(A, n, m);
acb_mat_init(LU, n, m);
perm = _perm_init(n);
acb_mat_randtest(A, state, prec, 10);
if (n_randint(state, 2))
{
acb_mat_lu_recursive(perm, LU, A, prec);
}
else
{
acb_mat_set(LU, A);
acb_mat_lu_recursive(perm, LU, LU, prec);
}
acb_mat_clear(A);
acb_mat_clear(LU);
_perm_clear(perm);
}
for (iter = 0; iter < 2000 * arb_test_multiplier(); iter++)
{
fmpq_mat_t Q;
acb_mat_t A, LU, P, L, U, T;
slong i, j, n, qbits, prec, *perm;
int q_invertible, r_invertible;
n = n_randint(state, 20);
qbits = 1 + n_randint(state, 100);
prec = 2 + n_randint(state, 202);
fmpq_mat_init(Q, n, n);
acb_mat_init(A, n, n);
acb_mat_init(LU, n, n);
acb_mat_init(P, n, n);
acb_mat_init(L, n, n);
acb_mat_init(U, n, n);
acb_mat_init(T, n, n);
perm = _perm_init(n);
fmpq_mat_randtest(Q, state, qbits);
q_invertible = fmpq_mat_is_invertible(Q);
if (!q_invertible)
{
acb_mat_set_fmpq_mat(A, Q, prec);
r_invertible = acb_mat_lu_recursive(perm, LU, A, prec);
if (r_invertible)
{
flint_printf("FAIL: matrix is singular over Q but not over R\n");
flint_printf("n = %wd, prec = %wd\n", n, prec);
flint_printf("\n");
flint_printf("Q = \n"); fmpq_mat_print(Q); flint_printf("\n\n");
flint_printf("A = \n"); acb_mat_printd(A, 15); flint_printf("\n\n");
flint_printf("LU = \n"); acb_mat_printd(LU, 15); flint_printf("\n\n");
}
}
else
{
/* now this must converge */
while (1)
{
acb_mat_set_fmpq_mat(A, Q, prec);
r_invertible = acb_mat_lu_recursive(perm, LU, A, prec);
if (r_invertible)
{
break;
}
else
{
if (prec > 10000)
{
flint_printf("FAIL: failed to converge at 10000 bits\n");
flint_abort();
}
prec *= 2;
}
}
acb_mat_one(L);
for (i = 0; i < n; i++)
for (j = 0; j < i; j++)
acb_set(acb_mat_entry(L, i, j),
acb_mat_entry(LU, i, j));
for (i = 0; i < n; i++)
for (j = i; j < n; j++)
acb_set(acb_mat_entry(U, i, j),
acb_mat_entry(LU, i, j));
for (i = 0; i < n; i++)
acb_one(acb_mat_entry(P, perm[i], i));
acb_mat_mul(T, P, L, prec);
acb_mat_mul(T, T, U, prec);
if (!acb_mat_contains_fmpq_mat(T, Q))
{
flint_printf("FAIL (containment, iter = %wd)\n", iter);
flint_printf("n = %wd, prec = %wd\n", n, prec);
flint_printf("\n");
flint_printf("Q = \n"); fmpq_mat_print(Q); flint_printf("\n\n");
flint_printf("A = \n"); acb_mat_printd(A, 15); flint_printf("\n\n");
flint_printf("LU = \n"); acb_mat_printd(LU, 15); flint_printf("\n\n");
flint_printf("L = \n"); acb_mat_printd(L, 15); flint_printf("\n\n");
flint_printf("U = \n"); acb_mat_printd(U, 15); flint_printf("\n\n");
flint_printf("P*L*U = \n"); acb_mat_printd(T, 15); flint_printf("\n\n");
flint_abort();
}
}
fmpq_mat_clear(Q);
acb_mat_clear(A);
acb_mat_clear(LU);
acb_mat_clear(P);
acb_mat_clear(L);
acb_mat_clear(U);
acb_mat_clear(T);
_perm_clear(perm);
}
flint_randclear(state);
flint_cleanup();
flint_printf("PASS\n");
return EXIT_SUCCESS;
}
|