1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
/*
Copyright (C) 2012, 2013 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "acb_poly.h"
int main()
{
slong iter;
flint_rand_t state;
flint_printf("lgamma_series....");
fflush(stdout);
flint_randinit(state);
/* special accuracy test case */
{
acb_poly_t a;
acb_t c;
acb_init(c);
acb_poly_init(a);
arb_set_str(acb_realref(c), "-20.25", 53);
arb_set_str(acb_imagref(c), "1e1000", 53);
acb_poly_set_coeff_acb(a, 0, c);
acb_poly_set_coeff_si(a, 1, 1);
acb_poly_lgamma_series(a, a, 3, 53);
if (acb_rel_accuracy_bits(a->coeffs) < 40 ||
acb_rel_accuracy_bits(a->coeffs + 1) < 40 ||
acb_rel_accuracy_bits(a->coeffs + 2) < 40)
{
flint_printf("FAIL: accuracy (reflection formula)\n\n");
acb_poly_printd(a, 15); flint_printf("\n\n");
flint_abort();
}
acb_poly_clear(a);
acb_clear(c);
}
for (iter = 0; iter < 500 * arb_test_multiplier(); iter++)
{
slong m, n1, n2, rbits1, rbits2, rbits3;
acb_poly_t a, b, c, d;
rbits1 = 2 + n_randint(state, 200);
rbits2 = 2 + n_randint(state, 200);
rbits3 = 2 + n_randint(state, 200);
m = 1 + n_randint(state, 30);
n1 = 1 + n_randint(state, 30);
n2 = 1 + n_randint(state, 30);
acb_poly_init(a);
acb_poly_init(b);
acb_poly_init(c);
acb_poly_init(d);
acb_poly_randtest(a, state, m, rbits1, 10);
acb_poly_randtest(b, state, m, rbits1, 10);
acb_poly_randtest(c, state, m, rbits1, 10);
acb_poly_lgamma_series(b, a, n1, rbits2);
acb_poly_lgamma_series(c, a, n2, rbits3);
acb_poly_set(d, b);
acb_poly_truncate(d, FLINT_MIN(n1, n2));
acb_poly_truncate(c, FLINT_MIN(n1, n2));
if (!acb_poly_overlaps(c, d))
{
flint_printf("FAIL\n\n");
flint_printf("n1 = %wd, n2 = %wd, bits2 = %wd, bits3 = %wd\n", n1, n2, rbits2, rbits3);
flint_printf("a = "); acb_poly_printd(a, 15); flint_printf("\n\n");
flint_printf("b = "); acb_poly_printd(b, 15); flint_printf("\n\n");
flint_printf("c = "); acb_poly_printd(c, 15); flint_printf("\n\n");
flint_abort();
}
/* check loggamma(a) + log(a) = loggamma(a+1) */
acb_poly_log_series(c, a, n1, rbits2);
acb_poly_add(c, b, c, rbits2);
acb_poly_set(d, a);
acb_add_ui(d->coeffs, d->coeffs, 1, rbits2);
acb_poly_lgamma_series(d, d, n1, rbits2);
if (!acb_poly_overlaps(c, d))
{
flint_printf("FAIL (functional equation)\n\n");
flint_printf("a = "); acb_poly_printd(a, 15); flint_printf("\n\n");
flint_printf("b = "); acb_poly_printd(b, 15); flint_printf("\n\n");
flint_printf("c = "); acb_poly_printd(c, 15); flint_printf("\n\n");
flint_printf("d = "); acb_poly_printd(d, 15); flint_printf("\n\n");
flint_abort();
}
acb_poly_lgamma_series(a, a, n1, rbits2);
if (!acb_poly_overlaps(a, b))
{
flint_printf("FAIL (aliasing)\n\n");
flint_abort();
}
acb_poly_clear(a);
acb_poly_clear(b);
acb_poly_clear(c);
acb_poly_clear(d);
}
flint_randclear(state);
flint_cleanup();
flint_printf("PASS\n");
return EXIT_SUCCESS;
}
|