1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
/*
Copyright (C) 2012 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "arb_poly.h"
/* allow changing this from the test code */
ARB_DLL slong arb_poly_newton_exp_cutoff = 0;
/* with inverse=1 simultaneously computes g = exp(-x) to length n
with inverse=0 uses g as scratch space, computing
g = exp(-x) only to length (n+1)/2 */
static void
_arb_poly_exp_series_newton(arb_ptr f, arb_ptr g,
arb_srcptr h, slong len, slong prec, int inverse, slong cutoff)
{
slong alloc;
arb_ptr T, U, hprime;
alloc = 3 * len;
T = _arb_vec_init(alloc);
U = T + len;
hprime = U + len;
_arb_poly_derivative(hprime, h, len, prec);
arb_zero(hprime + len - 1);
NEWTON_INIT(cutoff, len)
/* f := exp(h) + O(x^m), g := exp(-h) + O(x^m2) */
NEWTON_BASECASE(n)
_arb_poly_exp_series_basecase(f, h, n, n, prec);
_arb_poly_inv_series(g, f, (n + 1) / 2, (n + 1) / 2, prec);
NEWTON_END_BASECASE
/* extend from length m to length n */
NEWTON_LOOP(m, n)
slong m2 = (m + 1) / 2;
slong l = m - 1; /* shifted for derivative */
/* g := exp(-h) + O(x^m) */
_arb_poly_mullow(T, f, m, g, m2, m, prec);
_arb_poly_mullow(g + m2, g, m2, T + m2, m - m2, m - m2, prec);
_arb_vec_neg(g + m2, g + m2, m - m2);
/* U := h' + g (f' - f h') + O(x^(n-1))
Note: should replace h' by h' mod x^(m-1) */
_arb_vec_zero(f + m, n - m);
_arb_poly_mullow(T, f, n, hprime, n, n, prec); /* should be mulmid */
_arb_poly_derivative(U, f, n, prec); arb_zero(U + n - 1); /* should skip low terms */
_arb_vec_sub(U + l, U + l, T + l, n - l, prec);
_arb_poly_mullow(T + l, g, n - m, U + l, n - m, n - m, prec);
_arb_vec_add(U + l, hprime + l, T + l, n - m, prec);
/* f := f + f * (h - int U) + O(x^n) = exp(h) + O(x^n) */
_arb_poly_integral(U, U, n, prec); /* should skip low terms */
_arb_vec_sub(U + m, h + m, U + m, n - m, prec);
_arb_poly_mullow(f + m, f, n - m, U + m, n - m, n - m, prec);
/* g := exp(-h) + O(x^n) */
/* not needed if we only want exp(x) */
if (n == len && inverse)
{
_arb_poly_mullow(T, f, n, g, m, n, prec);
_arb_poly_mullow(g + m, g, m, T + m, n - m, n - m, prec);
_arb_vec_neg(g + m, g + m, n - m);
}
NEWTON_END_LOOP
NEWTON_END
_arb_vec_clear(T, alloc);
}
void
_arb_poly_exp_series(arb_ptr f, arb_srcptr h, slong hlen, slong n, slong prec)
{
hlen = FLINT_MIN(hlen, n);
if (hlen == 1)
{
arb_exp(f, h, prec);
_arb_vec_zero(f + 1, n - 1);
}
else if (n == 2)
{
arb_exp(f, h, prec);
arb_mul(f + 1, f, h + 1, prec); /* safe since hlen >= 2 */
}
else if (_arb_vec_is_zero(h + 1, hlen - 2)) /* h = a + bx^d */
{
slong i, j, d = hlen - 1;
arb_t t;
arb_init(t);
arb_set(t, h + d);
arb_exp(f, h, prec);
for (i = 1, j = d; j < n; j += d, i++)
{
arb_mul(f + j, f + j - d, t, prec);
arb_div_ui(f + j, f + j, i, prec);
_arb_vec_zero(f + j - d + 1, hlen - 2);
}
_arb_vec_zero(f + j - d + 1, n - (j - d + 1));
arb_clear(t);
}
else
{
slong cutoff;
if (arb_poly_newton_exp_cutoff != 0)
cutoff = arb_poly_newton_exp_cutoff;
else if (prec <= 256)
cutoff = 750;
else
cutoff = 1e5 / pow(log(prec), 3);
if (hlen <= cutoff)
{
_arb_poly_exp_series_basecase(f, h, hlen, n, prec);
}
else
{
arb_ptr g, t;
arb_t u;
int fix;
g = _arb_vec_init((n + 1) / 2);
fix = (hlen < n || h == f || !arb_is_zero(h));
if (fix)
{
t = _arb_vec_init(n);
_arb_vec_set(t + 1, h + 1, hlen - 1);
}
else
t = (arb_ptr) h;
arb_init(u);
arb_exp(u, h, prec);
_arb_poly_exp_series_newton(f, g, t, n, prec, 0, cutoff);
if (!arb_is_one(u))
_arb_vec_scalar_mul(f, f, n, u, prec);
_arb_vec_clear(g, (n + 1) / 2);
if (fix)
_arb_vec_clear(t, n);
arb_clear(u);
}
}
}
void
arb_poly_exp_series(arb_poly_t f, const arb_poly_t h, slong n, slong prec)
{
slong hlen = h->length;
if (n == 0)
{
arb_poly_zero(f);
return;
}
if (hlen == 0)
{
arb_poly_one(f);
return;
}
if (hlen == 1)
n = 1;
arb_poly_fit_length(f, n);
_arb_poly_exp_series(f->coeffs, h->coeffs, hlen, n, prec);
_arb_poly_set_length(f, n);
_arb_poly_normalise(f);
}
|