File: inv_series.c

package info (click to toggle)
flint-arb 1%3A2.19.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 13,028 kB
  • sloc: ansic: 177,109; sh: 553; makefile: 288; python: 268
file content (114 lines) | stat: -rw-r--r-- 2,868 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
/*
    Copyright (C) 2012, 2013 Fredrik Johansson

    This file is part of Arb.

    Arb is free software: you can redistribute it and/or modify it under
    the terms of the GNU Lesser General Public License (LGPL) as published
    by the Free Software Foundation; either version 2.1 of the License, or
    (at your option) any later version.  See <http://www.gnu.org/licenses/>.
*/

#include "arb_poly.h"

#define MULLOW(z, x, xn, y, yn, nn, prec) \
    if ((xn) >= (yn)) \
        _arb_poly_mullow(z, x, xn, y, yn, nn, prec); \
    else \
        _arb_poly_mullow(z, y, yn, x, xn, nn, prec); \

void
_arb_poly_inv_series(arb_ptr Qinv,
    arb_srcptr Q, slong Qlen, slong len, slong prec)
{
    Qlen = FLINT_MIN(Qlen, len);

    arb_inv(Qinv, Q, prec);

    if (Qlen == 1)
    {
        _arb_vec_zero(Qinv + 1, len - 1);
    }
    else if (len == 2)
    {
        arb_mul(Qinv + 1, Qinv, Qinv, prec);
        arb_mul(Qinv + 1, Qinv + 1, Q + 1, prec);
        arb_neg(Qinv + 1, Qinv + 1);
    }
    else
    {
        slong i, blen;

        /* The basecase algorithm is faster for much larger Qlen or len than
           this, but unfortunately also much less numerically stable. */
        if (Qlen == 2 || len <= 8)
            blen = len;
        else
            blen = FLINT_MIN(len, 4);

        for (i = 1; i < blen; i++)
        {
            arb_dot(Qinv + i, NULL, 1,
                Q + 1, 1, Qinv + i - 1, -1, FLINT_MIN(i, Qlen - 1), prec);
            if (!arb_is_one(Qinv))
                arb_mul(Qinv + i, Qinv + i, Qinv, prec);
        }

        if (len > blen)
        {
            slong Qnlen, Wlen, W2len;
            arb_ptr W;

            W = _arb_vec_init(len);

            NEWTON_INIT(blen, len)
            NEWTON_LOOP(m, n)

            Qnlen = FLINT_MIN(Qlen, n);
            Wlen = FLINT_MIN(Qnlen + m - 1, n);
            W2len = Wlen - m;
            MULLOW(W, Q, Qnlen, Qinv, m, Wlen, prec);
            MULLOW(Qinv + m, Qinv, m, W + m, W2len, n - m, prec);
            _arb_vec_neg(Qinv + m, Qinv + m, n - m);

            NEWTON_END_LOOP
            NEWTON_END

            _arb_vec_clear(W, len);
        }
    }
}

void
arb_poly_inv_series(arb_poly_t Qinv, const arb_poly_t Q, slong n, slong prec)
{
    if (n == 0)
    {
        arb_poly_zero(Qinv);
        return;
    }

    if (Q->length == 0)
    {
        arb_poly_fit_length(Qinv, n);
        _arb_vec_indeterminate(Qinv->coeffs, n);
        _arb_poly_set_length(Qinv, n);
        return;
    }

    if (Qinv == Q)
    {
        arb_poly_t t;
        arb_poly_init(t);
        arb_poly_inv_series(t, Q, n, prec);
        arb_poly_swap(Qinv, t);
        arb_poly_clear(t);
        return;
    }

    arb_poly_fit_length(Qinv, n);
    _arb_poly_inv_series(Qinv->coeffs, Q->coeffs, Q->length, n, prec);
    _arb_poly_set_length(Qinv, n);
    _arb_poly_normalise(Qinv);
}