1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
|
/*
Copyright (C) 2014 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include <math.h>
#include "arb_poly.h"
void
_arb_poly_get_scale(fmpz_t scale, arb_srcptr x, slong xlen,
arb_srcptr y, slong ylen)
{
slong xa, xb, ya, yb, den;
fmpz_zero(scale);
/* ignore zeros (and infs/nans!); find the first and last
finite nonzero entries to determine the scale */
xa = 0;
xb = xlen - 1;
while (xa < xlen && arf_is_special(arb_midref(x + xa))) xa++;
while (xb > xa && arf_is_special(arb_midref(x + xb))) xb--;
ya = 0;
yb = ylen - 1;
while (ya < ylen && arf_is_special(arb_midref(y + ya))) ya++;
while (yb > ya && arf_is_special(arb_midref(y + yb))) yb--;
/* compute average of exponent differences, weighted by the lengths */
if (xa <= xb && ya <= yb && (xa < xb || ya < yb))
{
fmpz_add(scale, scale, ARF_EXPREF(arb_midref(x + xb)));
fmpz_sub(scale, scale, ARF_EXPREF(arb_midref(x + xa)));
fmpz_add(scale, scale, ARF_EXPREF(arb_midref(y + yb)));
fmpz_sub(scale, scale, ARF_EXPREF(arb_midref(y + ya)));
den = (xb - xa) + (yb - ya);
/* scale = floor(scale / den + 1/2) = floor((2 scale + den) / (2 den)) */
fmpz_mul_2exp(scale, scale, 1);
fmpz_add_ui(scale, scale, den);
fmpz_fdiv_q_ui(scale, scale, 2 * den);
}
}
/* Break vector into same-exponent blocks where the largest block
has a height of at most ALPHA*prec + BETA bits. These are just
tuning parameters. Note that ALPHA * MAG_BITS + BETA
should be smaller than DOUBLE_BLOCK_MAX_HEIGHT if we want to use
doubles for error bounding. */
#define ALPHA 3.0
#define BETA 512
/* Maximum length of block for which we use double multiplication
(for longer blocks, we use fmpz_poly multiplication). This is essentially
just a tuning parameter, but note that it must be considered when
compensating for rounding error below. */
#define DOUBLE_BLOCK_MAX_LENGTH 1000
/* Computing a dot product of length DOUBLE_BLOCK_MAX_LENGTH involving
only nonnegative numbers, and then multiplying by this factor, must give
an upper bound for the exact dot product (we can assume that no
overflow or underflow occurs). The following is certainly
sufficient, but it would be nice to include a formal proof here. */
#define DOUBLE_ROUNDING_FACTOR (1.0 + 1e-9)
/* Maximum height for which we use double multiplication. Since the dynamic
exponent range of doubles is about +/- 1024, this must be less than about
1024 (to allow the product of two numbers). This must also
account for adding MAG_BITS bits. */
#define DOUBLE_BLOCK_MAX_HEIGHT 800
/* We divide coefficients by 2^DOUBLE_BLOCK_SHIFT when converting them to
doubles, in order to use the whole exponent range. Note that this means
numbers of size (2^(-DOUBLE_BLOCK_SHIFT))^2 must not underflow. */
#define DOUBLE_BLOCK_SHIFT (DOUBLE_BLOCK_MAX_HEIGHT / 2)
static void
_mag_vec_get_fmpz_2exp_blocks(fmpz * coeffs,
double * dblcoeffs, fmpz * exps, slong * blocks, const fmpz_t scale,
arb_srcptr x, mag_srcptr xm, slong len)
{
fmpz_t top, bot, t, b, v, block_top, block_bot;
slong i, j, s, block, bits, maxheight;
int in_zero;
mag_srcptr cur;
fmpz_init(top);
fmpz_init(bot);
fmpz_init(t);
fmpz_init(b);
fmpz_init(v);
fmpz_init(block_top);
fmpz_init(block_bot);
blocks[0] = 0;
block = 0;
in_zero = 1;
maxheight = ALPHA * MAG_BITS + BETA;
if (maxheight > DOUBLE_BLOCK_MAX_HEIGHT)
flint_abort();
for (i = 0; i < len; i++)
{
cur = (x == NULL) ? (xm + i) : arb_radref(x + i);
/* Skip (must be zero, since we assume there are no Infs/NaNs). */
if (mag_is_special(cur))
continue;
/* Bottom and top exponent of current number */
bits = MAG_BITS;
fmpz_set(top, MAG_EXPREF(cur));
fmpz_submul_ui(top, scale, i);
fmpz_sub_ui(bot, top, bits);
/* Extend current block. */
if (in_zero)
{
fmpz_swap(block_top, top);
fmpz_swap(block_bot, bot);
}
else
{
fmpz_max(t, top, block_top);
fmpz_min(b, bot, block_bot);
fmpz_sub(v, t, b);
/* extend current block */
if (fmpz_cmp_ui(v, maxheight) < 0)
{
fmpz_swap(block_top, t);
fmpz_swap(block_bot, b);
}
else /* start new block */
{
/* write exponent for previous block */
fmpz_set(exps + block, block_bot);
block++;
blocks[block] = i;
fmpz_swap(block_top, top);
fmpz_swap(block_bot, bot);
}
}
in_zero = 0;
}
/* write exponent for last block */
fmpz_set(exps + block, block_bot);
/* end marker */
blocks[block + 1] = len;
/* write the block data */
for (i = 0; blocks[i] != len; i++)
{
for (j = blocks[i]; j < blocks[i + 1]; j++)
{
cur = (x == NULL) ? (xm + j) : arb_radref(x + j);
if (mag_is_special(cur))
{
fmpz_zero(coeffs + j);
dblcoeffs[j] = 0.0;
}
else
{
mp_limb_t man;
double c;
man = MAG_MAN(cur);
/* TODO: only write and use doubles when block is short? */
/* Divide by 2^(scale * j) */
fmpz_mul_ui(t, scale, j);
fmpz_sub(t, MAG_EXPREF(cur), t);
fmpz_sub_ui(t, t, MAG_BITS); /* bottom exponent */
s = _fmpz_sub_small(t, exps + i);
if (s < 0) flint_abort(); /* Bug catcher */
fmpz_set_ui(coeffs + j, man);
fmpz_mul_2exp(coeffs + j, coeffs + j, s);
c = man;
c = ldexp(c, s - DOUBLE_BLOCK_SHIFT);
if (c < 1e-150 || c > 1e150) /* Bug catcher */
flint_abort();
dblcoeffs[j] = c;
}
}
}
fmpz_clear(top);
fmpz_clear(bot);
fmpz_clear(t);
fmpz_clear(b);
fmpz_clear(v);
fmpz_clear(block_top);
fmpz_clear(block_bot);
}
static void
_arb_vec_get_fmpz_2exp_blocks(fmpz * coeffs, fmpz * exps,
slong * blocks, const fmpz_t scale, arb_srcptr x, slong len, slong prec)
{
fmpz_t top, bot, t, b, v, block_top, block_bot;
slong i, j, s, block, bits, maxheight;
int in_zero;
fmpz_init(top);
fmpz_init(bot);
fmpz_init(t);
fmpz_init(b);
fmpz_init(v);
fmpz_init(block_top);
fmpz_init(block_bot);
blocks[0] = 0;
block = 0;
in_zero = 1;
if (prec == ARF_PREC_EXACT)
maxheight = ARF_PREC_EXACT;
else
maxheight = ALPHA * prec + BETA;
for (i = 0; i < len; i++)
{
bits = arf_bits(arb_midref(x + i));
/* Skip (must be zero, since we assume there are no Infs/NaNs). */
if (bits == 0)
continue;
/* Bottom and top exponent of current number */
fmpz_set(top, ARF_EXPREF(arb_midref(x + i)));
fmpz_submul_ui(top, scale, i);
fmpz_sub_ui(bot, top, bits);
/* Extend current block. */
if (in_zero)
{
fmpz_swap(block_top, top);
fmpz_swap(block_bot, bot);
}
else
{
fmpz_max(t, top, block_top);
fmpz_min(b, bot, block_bot);
fmpz_sub(v, t, b);
/* extend current block */
if (fmpz_cmp_ui(v, maxheight) < 0)
{
fmpz_swap(block_top, t);
fmpz_swap(block_bot, b);
}
else /* start new block */
{
/* write exponent for previous block */
fmpz_set(exps + block, block_bot);
block++;
blocks[block] = i;
fmpz_swap(block_top, top);
fmpz_swap(block_bot, bot);
}
}
in_zero = 0;
}
/* write exponent for last block */
fmpz_set(exps + block, block_bot);
/* end marker */
blocks[block + 1] = len;
/* write the block data */
for (i = 0; blocks[i] != len; i++)
{
for (j = blocks[i]; j < blocks[i + 1]; j++)
{
if (arf_is_special(arb_midref(x + j)))
{
fmpz_zero(coeffs + j);
}
else
{
/* TODO: make this a single operation */
arf_get_fmpz_2exp(coeffs + j, bot, arb_midref(x + j));
fmpz_mul_ui(t, scale, j);
fmpz_sub(t, bot, t);
s = _fmpz_sub_small(t, exps + i);
if (s < 0) flint_abort(); /* Bug catcher */
fmpz_mul_2exp(coeffs + j, coeffs + j, s);
}
}
}
fmpz_clear(top);
fmpz_clear(bot);
fmpz_clear(t);
fmpz_clear(b);
fmpz_clear(v);
fmpz_clear(block_top);
fmpz_clear(block_bot);
}
static void
_arb_poly_addmullow_rad(arb_ptr z, fmpz * zz,
const fmpz * xz, const double * xdbl, const fmpz * xexps,
const slong * xblocks, slong xlen,
const fmpz * yz, const double * ydbl, const fmpz * yexps,
const slong * yblocks, slong ylen, slong n)
{
slong i, j, k, ii, xp, yp, xl, yl, bn;
fmpz_t zexp;
mag_t t;
fmpz_init(zexp);
mag_init(t);
for (i = 0; (xp = xblocks[i]) != xlen; i++)
{
for (j = 0; (yp = yblocks[j]) != ylen; j++)
{
if (xp + yp >= n)
continue;
xl = xblocks[i + 1] - xp;
yl = yblocks[j + 1] - yp;
bn = FLINT_MIN(xl + yl - 1, n - xp - yp);
xl = FLINT_MIN(xl, bn);
yl = FLINT_MIN(yl, bn);
fmpz_add_inline(zexp, xexps + i, yexps + j);
if (xl > 1 && yl > 1 &&
(xl < DOUBLE_BLOCK_MAX_LENGTH || yl < DOUBLE_BLOCK_MAX_LENGTH))
{
fmpz_add_ui(zexp, zexp, 2 * DOUBLE_BLOCK_SHIFT);
for (k = 0; k < bn; k++)
{
/* Classical multiplication (may round down!) */
double ss = 0.0;
for (ii = FLINT_MAX(0, k - yl + 1);
ii <= FLINT_MIN(xl - 1, k); ii++)
{
ss += xdbl[xp + ii] * ydbl[yp + k - ii];
}
/* Compensate for rounding error */
ss *= DOUBLE_ROUNDING_FACTOR;
mag_set_d_2exp_fmpz(t, ss, zexp);
mag_add(arb_radref(z + xp + yp + k),
arb_radref(z + xp + yp + k), t);
}
}
else
{
if (xl >= yl)
_fmpz_poly_mullow(zz, xz + xp, xl, yz + yp, yl, bn);
else
_fmpz_poly_mullow(zz, yz + yp, yl, xz + xp, xl, bn);
for (k = 0; k < bn; k++)
{
mag_set_fmpz_2exp_fmpz(t, zz + k, zexp);
mag_add(arb_radref(z + xp + yp + k),
arb_radref(z + xp + yp + k), t);
}
}
}
}
fmpz_clear(zexp);
mag_clear(t);
}
static void
_arb_poly_addmullow_block(arb_ptr z, fmpz * zz,
const fmpz * xz, const fmpz * xexps, const slong * xblocks, slong xlen,
const fmpz * yz, const fmpz * yexps, const slong * yblocks, slong ylen,
slong n, slong prec, int squaring)
{
slong i, j, k, xp, yp, xl, yl, bn;
fmpz_t zexp;
fmpz_init(zexp);
if (squaring)
{
for (i = 0; (xp = xblocks[i]) != xlen; i++)
{
if (2 * xp >= n)
continue;
xl = xblocks[i + 1] - xp;
bn = FLINT_MIN(2 * xl - 1, n - 2 * xp);
xl = FLINT_MIN(xl, bn);
_fmpz_poly_sqrlow(zz, xz + xp, xl, bn);
_fmpz_add2_fast(zexp, xexps + i, xexps + i, 0);
for (k = 0; k < bn; k++)
arb_add_fmpz_2exp(z + 2 * xp + k, z + 2 * xp + k, zz + k, zexp, prec);
}
}
for (i = 0; (xp = xblocks[i]) != xlen; i++)
{
for (j = squaring ? i + 1 : 0; (yp = yblocks[j]) != ylen; j++)
{
if (xp + yp >= n)
continue;
xl = xblocks[i + 1] - xp;
yl = yblocks[j + 1] - yp;
bn = FLINT_MIN(xl + yl - 1, n - xp - yp);
xl = FLINT_MIN(xl, bn);
yl = FLINT_MIN(yl, bn);
if (xl >= yl)
_fmpz_poly_mullow(zz, xz + xp, xl, yz + yp, yl, bn);
else
_fmpz_poly_mullow(zz, yz + yp, yl, xz + xp, xl, bn);
_fmpz_add2_fast(zexp, xexps + i, yexps + j, squaring);
for (k = 0; k < bn; k++)
arb_add_fmpz_2exp(z + xp + yp + k, z + xp + yp + k, zz + k, zexp, prec);
}
}
fmpz_clear(zexp);
}
void
_arb_poly_mullow_block(arb_ptr z, arb_srcptr x, slong xlen,
arb_srcptr y, slong ylen, slong n, slong prec)
{
slong xmlen, xrlen, ymlen, yrlen, i;
fmpz *xz, *yz, *zz;
fmpz *xe, *ye;
slong *xblocks, *yblocks;
int squaring;
fmpz_t scale, t;
xlen = FLINT_MIN(xlen, n);
ylen = FLINT_MIN(ylen, n);
squaring = (x == y) && (xlen == ylen);
/* Strip trailing zeros */
xmlen = xrlen = xlen;
while (xmlen > 0 && arf_is_zero(arb_midref(x + xmlen - 1))) xmlen--;
while (xrlen > 0 && mag_is_zero(arb_radref(x + xrlen - 1))) xrlen--;
if (squaring)
{
ymlen = xmlen;
yrlen = xrlen;
}
else
{
ymlen = yrlen = ylen;
while (ymlen > 0 && arf_is_zero(arb_midref(y + ymlen - 1))) ymlen--;
while (yrlen > 0 && mag_is_zero(arb_radref(y + yrlen - 1))) yrlen--;
}
/* We don't know how to deal with infinities or NaNs */
if (!_arb_vec_is_finite(x, xlen) ||
(!squaring && !_arb_vec_is_finite(y, ylen)))
{
_arb_poly_mullow_classical(z, x, xlen, y, ylen, n, prec);
return;
}
xlen = FLINT_MAX(xmlen, xrlen);
ylen = FLINT_MAX(ymlen, yrlen);
/* Start with the zero polynomial */
_arb_vec_zero(z, n);
/* Nothing to do */
if (xlen == 0 || ylen == 0)
return;
n = FLINT_MIN(n, xlen + ylen - 1);
fmpz_init(scale);
fmpz_init(t);
xz = _fmpz_vec_init(xlen);
yz = _fmpz_vec_init(ylen);
zz = _fmpz_vec_init(n);
xe = _fmpz_vec_init(xlen);
ye = _fmpz_vec_init(ylen);
xblocks = flint_malloc(sizeof(slong) * (xlen + 1));
yblocks = flint_malloc(sizeof(slong) * (ylen + 1));
_arb_poly_get_scale(scale, x, xlen, y, ylen);
/* Error propagation */
/* (xm + xr)*(ym + yr) = (xm*ym) + (xr*ym + xm*yr + xr*yr)
= (xm*ym) + (xm*yr + xr*(ym + yr)) */
if (xrlen != 0 || yrlen != 0)
{
mag_ptr tmp;
double *xdbl, *ydbl;
tmp = _mag_vec_init(FLINT_MAX(xlen, ylen));
xdbl = flint_malloc(sizeof(double) * xlen);
ydbl = flint_malloc(sizeof(double) * ylen);
/* (xm + xr)^2 = (xm*ym) + (xr^2 + 2 xm xr)
= (xm*ym) + xr*(2 xm + xr) */
if (squaring)
{
_mag_vec_get_fmpz_2exp_blocks(xz, xdbl, xe, xblocks, scale, x, NULL, xrlen);
for (i = 0; i < xlen; i++)
{
arf_get_mag(tmp + i, arb_midref(x + i));
mag_mul_2exp_si(tmp + i, tmp + i, 1);
mag_add(tmp + i, tmp + i, arb_radref(x + i));
}
_mag_vec_get_fmpz_2exp_blocks(yz, ydbl, ye, yblocks, scale, NULL, tmp, xlen);
_arb_poly_addmullow_rad(z, zz, xz, xdbl, xe, xblocks, xrlen, yz, ydbl, ye, yblocks, xlen, n);
}
else if (yrlen == 0)
{
/* xr * |ym| */
_mag_vec_get_fmpz_2exp_blocks(xz, xdbl, xe, xblocks, scale, x, NULL, xrlen);
for (i = 0; i < ymlen; i++)
arf_get_mag(tmp + i, arb_midref(y + i));
_mag_vec_get_fmpz_2exp_blocks(yz, ydbl, ye, yblocks, scale, NULL, tmp, ymlen);
_arb_poly_addmullow_rad(z, zz, xz, xdbl, xe, xblocks, xrlen, yz, ydbl, ye, yblocks, ymlen, n);
}
else
{
/* |xm| * yr */
for (i = 0; i < xmlen; i++)
arf_get_mag(tmp + i, arb_midref(x + i));
_mag_vec_get_fmpz_2exp_blocks(xz, xdbl, xe, xblocks, scale, NULL, tmp, xmlen);
_mag_vec_get_fmpz_2exp_blocks(yz, ydbl, ye, yblocks, scale, y, NULL, yrlen);
_arb_poly_addmullow_rad(z, zz, xz, xdbl, xe, xblocks, xmlen, yz, ydbl, ye, yblocks, yrlen, n);
/* xr*(|ym| + yr) */
if (xrlen != 0)
{
_mag_vec_get_fmpz_2exp_blocks(xz, xdbl, xe, xblocks, scale, x, NULL, xrlen);
for (i = 0; i < ylen; i++)
arb_get_mag(tmp + i, y + i);
_mag_vec_get_fmpz_2exp_blocks(yz, ydbl, ye, yblocks, scale, NULL, tmp, ylen);
_arb_poly_addmullow_rad(z, zz, xz, xdbl, xe, xblocks, xrlen, yz, ydbl, ye, yblocks, ylen, n);
}
}
_mag_vec_clear(tmp, FLINT_MAX(xlen, ylen));
flint_free(xdbl);
flint_free(ydbl);
}
/* multiply midpoints */
if (xmlen != 0 && ymlen != 0)
{
_arb_vec_get_fmpz_2exp_blocks(xz, xe, xblocks, scale, x, xmlen, prec);
if (squaring)
{
_arb_poly_addmullow_block(z, zz, xz, xe, xblocks, xmlen, xz, xe, xblocks, xmlen, n, prec, 1);
}
else
{
_arb_vec_get_fmpz_2exp_blocks(yz, ye, yblocks, scale, y, ymlen, prec);
_arb_poly_addmullow_block(z, zz, xz, xe, xblocks, xmlen, yz, ye, yblocks, ymlen, n, prec, 0);
}
}
/* Unscale. */
if (!fmpz_is_zero(scale))
{
fmpz_zero(t);
for (i = 0; i < n; i++)
{
arb_mul_2exp_fmpz(z + i, z + i, t);
fmpz_add(t, t, scale);
}
}
_fmpz_vec_clear(xz, xlen);
_fmpz_vec_clear(yz, ylen);
_fmpz_vec_clear(zz, n);
_fmpz_vec_clear(xe, xlen);
_fmpz_vec_clear(ye, ylen);
flint_free(xblocks);
flint_free(yblocks);
fmpz_clear(scale);
fmpz_clear(t);
}
void
arb_poly_mullow_block(arb_poly_t res, const arb_poly_t poly1,
const arb_poly_t poly2, slong n, slong prec)
{
slong xlen, ylen, zlen;
xlen = poly1->length;
ylen = poly2->length;
if (xlen == 0 || ylen == 0 || n == 0)
{
arb_poly_zero(res);
return;
}
xlen = FLINT_MIN(xlen, n);
ylen = FLINT_MIN(ylen, n);
zlen = FLINT_MIN(xlen + ylen - 1, n);
if (res == poly1 || res == poly2)
{
arb_poly_t tmp;
arb_poly_init2(tmp, zlen);
_arb_poly_mullow_block(tmp->coeffs, poly1->coeffs, xlen,
poly2->coeffs, ylen, zlen, prec);
arb_poly_swap(res, tmp);
arb_poly_clear(tmp);
}
else
{
arb_poly_fit_length(res, zlen);
_arb_poly_mullow_block(res->coeffs, poly1->coeffs, xlen,
poly2->coeffs, ylen, zlen, prec);
}
_arb_poly_set_length(res, zlen);
_arb_poly_normalise(res);
}
|