1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
/*
Copyright (C) 2013 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "arb_poly.h"
slong arf_get_si(const arf_t x, arf_rnd_t rnd);
void _arb_poly_lgamma_series_at_one(arb_ptr u, slong len, slong prec);
void arb_gamma_stirling_choose_param(int * reflect, slong * r, slong * n,
const arb_t x, int use_reflect, int digamma, slong prec);
void _arb_poly_gamma_stirling_eval(arb_ptr res, const arb_t z, slong n, slong num, slong prec);
void
_arb_poly_rgamma_series(arb_ptr res, arb_srcptr h, slong hlen, slong len, slong prec)
{
int reflect, isint;
slong i, rflen, r, n, wp;
arb_ptr t, u, v;
arb_struct f[2];
hlen = FLINT_MIN(hlen, len);
if (hlen == 1)
{
arb_rgamma(res, h, prec);
_arb_vec_zero(res + 1, len - 1);
return;
}
isint = arb_is_int(h);
if (len <= 2 && isint && arf_sgn(arb_midref(h)) <= 0)
{
int even = arf_is_int_2exp_si(arb_midref(h), 1);
/* use res[0] as tmp to allow aliasing */
arb_sub_ui(res, h, 1, prec);
arb_neg(res, res);
arb_gamma(res, res, prec);
arb_mul(res + 1, h + 1, res, prec);
if (!even)
arb_neg(res + 1, res + 1);
arb_zero(res);
return;
}
wp = prec + FLINT_BIT_COUNT(prec);
t = _arb_vec_init(len);
u = _arb_vec_init(len);
v = _arb_vec_init(len);
arb_init(f);
arb_init(f + 1);
/* use zeta values at small integers */
if (isint && (arf_cmpabs_ui(arb_midref(h), prec / 2) < 0))
{
r = arf_get_si(arb_midref(h), ARF_RND_DOWN);
_arb_poly_lgamma_series_at_one(u, len, wp);
_arb_vec_neg(u, u, len);
_arb_poly_exp_series(t, u, len, len, wp);
if (r == 1)
{
_arb_vec_swap(v, t, len);
}
else if (r <= 0)
{
arb_set(f, h);
arb_one(f + 1);
rflen = FLINT_MIN(len, 2 - r);
_arb_poly_rising_ui_series(u, f, FLINT_MIN(2, len), 1 - r, rflen, wp);
_arb_poly_mullow(v, t, len, u, rflen, len, wp);
}
else
{
arb_one(f);
arb_one(f + 1);
rflen = FLINT_MIN(len, r);
_arb_poly_rising_ui_series(v, f, FLINT_MIN(2, len), r - 1, rflen, wp);
/* TODO: use div_series? */
_arb_poly_inv_series(u, v, rflen, len, wp);
_arb_poly_mullow(v, t, len, u, len, len, wp);
}
}
else
{
/* otherwise use Stirling series */
arb_gamma_stirling_choose_param(&reflect, &r, &n, h, 1, 0, wp);
/* rgamma(h) = (gamma(1-h+r) sin(pi h)) / (rf(1-h, r) * pi), h = h0 + t*/
if (reflect)
{
/* u = gamma(r+1-h) */
arb_sub_ui(f, h, r + 1, wp);
arb_neg(f, f);
_arb_poly_gamma_stirling_eval(t, f, n, len, wp);
_arb_poly_exp_series(u, t, len, len, wp);
for (i = 1; i < len; i += 2)
arb_neg(u + i, u + i);
/* v = sin(pi x) */
arb_set(f, h);
arb_one(f + 1);
_arb_poly_sin_pi_series(v, f, 2, len, wp);
_arb_poly_mullow(t, u, len, v, len, len, wp);
/* rf(1-h,r) * pi */
if (r == 0)
{
arb_const_pi(u, wp);
_arb_vec_scalar_div(v, t, len, u, wp);
}
else
{
arb_sub_ui(f, h, 1, wp);
arb_neg(f, f);
arb_set_si(f + 1, -1);
rflen = FLINT_MIN(len, r + 1);
_arb_poly_rising_ui_series(v, f, FLINT_MIN(2, len), r, rflen, wp);
arb_const_pi(u, wp);
_arb_vec_scalar_mul(v, v, rflen, u, wp);
/* divide by rising factorial */
/* TODO: might better to use div_series, when it has a good basecase */
_arb_poly_inv_series(u, v, rflen, len, wp);
_arb_poly_mullow(v, t, len, u, len, len, wp);
}
}
else
{
/* rgamma(h) = rgamma(h+r) rf(h,r) */
if (r == 0)
{
arb_add_ui(f, h, r, wp);
_arb_poly_gamma_stirling_eval(t, f, n, len, wp);
_arb_vec_neg(t, t, len);
_arb_poly_exp_series(v, t, len, len, wp);
}
else
{
arb_set(f, h);
arb_one(f + 1);
rflen = FLINT_MIN(len, r + 1);
_arb_poly_rising_ui_series(t, f, FLINT_MIN(2, len), r, rflen, wp);
arb_add_ui(f, h, r, wp);
_arb_poly_gamma_stirling_eval(v, f, n, len, wp);
_arb_vec_neg(v, v, len);
_arb_poly_exp_series(u, v, len, len, wp);
_arb_poly_mullow(v, u, len, t, rflen, len, wp);
}
}
}
/* compose with nonconstant part */
arb_zero(t);
_arb_vec_set(t + 1, h + 1, hlen - 1);
_arb_poly_compose_series(res, v, len, t, hlen, len, prec);
arb_clear(f);
arb_clear(f + 1);
_arb_vec_clear(t, len);
_arb_vec_clear(u, len);
_arb_vec_clear(v, len);
}
void
arb_poly_rgamma_series(arb_poly_t res, const arb_poly_t f, slong n, slong prec)
{
if (f->length == 0 || n == 0)
{
arb_poly_zero(res);
}
else
{
arb_poly_fit_length(res, n);
_arb_poly_rgamma_series(res->coeffs, f->coeffs, f->length, n, prec);
_arb_poly_set_length(res, n);
_arb_poly_normalise(res);
}
}
|