File: zeta_series.c

package info (click to toggle)
flint-arb 1%3A2.19.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 13,028 kB
  • sloc: ansic: 177,109; sh: 553; makefile: 288; python: 268
file content (173 lines) | stat: -rw-r--r-- 4,494 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/*
    Copyright (C) 2013 Fredrik Johansson

    This file is part of Arb.

    Arb is free software: you can redistribute it and/or modify it under
    the terms of the GNU Lesser General Public License (LGPL) as published
    by the Free Software Foundation; either version 2.1 of the License, or
    (at your option) any later version.  See <http://www.gnu.org/licenses/>.
*/

#include "arb_poly.h"
#include "acb_poly.h"

/* series of c^(d+x) */
static __inline__ void
_arb_poly_pow_cpx(arb_ptr res, const arb_t c, const arb_t d, slong trunc, slong prec)
{
    slong i;
    arb_t logc;

    arb_init(logc);
    arb_log(logc, c, prec);
    arb_mul(res + 0, logc, d, prec);
    arb_exp(res + 0, res + 0, prec);

    for (i = 1; i < trunc; i++)
    {
        arb_mul(res + i, res + i - 1, logc, prec);
        arb_div_ui(res + i, res + i, i, prec);
    }

    arb_clear(logc);
}

void
_arb_poly_zeta_series(arb_ptr res, arb_srcptr h, slong hlen, const arb_t a, int deflate, slong len, slong prec)
{
    slong i;
    acb_t cs, ca;
    acb_ptr z;
    arb_ptr t, u;

    if (arb_contains_nonpositive(a))
    {
        _arb_vec_indeterminate(res, len);
        return;
    }

    hlen = FLINT_MIN(hlen, len);

    z = _acb_vec_init(len);
    t = _arb_vec_init(len);
    u = _arb_vec_init(len);
    acb_init(cs);
    acb_init(ca);

    /* use reflection formula */
    if (arf_sgn(arb_midref(h)) < 0 && arb_is_one(a))
    {
        /* zeta(s) = (2*pi)**s * sin(pi*s/2) / pi * gamma(1-s) * zeta(1-s) */
        arb_t pi;
        arb_ptr f, s1, s2, s3, s4;

        arb_init(pi);
        f = _arb_vec_init(2);
        s1 = _arb_vec_init(len);
        s2 = _arb_vec_init(len);
        s3 = _arb_vec_init(len);
        s4 = _arb_vec_init(len);

        arb_const_pi(pi, prec);

        /* s1 = (2*pi)**s */
        arb_mul_2exp_si(pi, pi, 1);
        _arb_poly_pow_cpx(s1, pi, h, len, prec);
        arb_mul_2exp_si(pi, pi, -1);

        /* s2 = sin(pi*s/2) / pi */
        arb_set(f, h);
        arb_one(f + 1);
        arb_mul_2exp_si(f, f, -1);
        arb_mul_2exp_si(f + 1, f + 1, -1);
        _arb_poly_sin_pi_series(s2, f, 2, len, prec);
        _arb_vec_scalar_div(s2, s2, len, pi, prec);

        /* s3 = gamma(1-s) */
        arb_sub_ui(f, h, 1, prec);
        arb_neg(f, f);
        arb_set_si(f + 1, -1);
        _arb_poly_gamma_series(s3, f, 2, len, prec);

        /* s4 = zeta(1-s) */
        arb_sub_ui(f, h, 1, prec);
        arb_neg(f, f);
        acb_set_arb(cs, f);
        acb_one(ca);
        _acb_poly_zeta_cpx_series(z, cs, ca, 0, len, prec);
        for (i = 0; i < len; i++)
            arb_set(s4 + i, acb_realref(z + i));
        for (i = 1; i < len; i += 2)
            arb_neg(s4 + i, s4 + i);

        _arb_poly_mullow(u, s1, len, s2, len, len, prec);
        _arb_poly_mullow(s1, s3, len, s4, len, len, prec);
        _arb_poly_mullow(t, u, len, s1, len, len, prec);

        /* add 1/(1-(s+t)) = 1/(1-s) + t/(1-s)^2 + ... */
        if (deflate)
        {
            arb_sub_ui(u, h, 1, prec);
            arb_neg(u, u);
            arb_inv(u, u, prec);
            for (i = 1; i < len; i++)
                arb_mul(u + i, u + i - 1, u, prec);
            _arb_vec_add(t, t, u, len, prec);
        }

        arb_clear(pi);
        _arb_vec_clear(f, 2);
        _arb_vec_clear(s1, len);
        _arb_vec_clear(s2, len);
        _arb_vec_clear(s3, len);
        _arb_vec_clear(s4, len);
    }
    else
    {
        acb_set_arb(cs, h);
        acb_set_arb(ca, a);
        _acb_poly_zeta_cpx_series(z, cs, ca, deflate, len, prec);
        for (i = 0; i < len; i++)
            arb_set(t + i, acb_realref(z + i));
    }

    /* compose with nonconstant part */
    arb_zero(u);
    _arb_vec_set(u + 1, h + 1, hlen - 1);
    _arb_poly_compose_series(res, t, len, u, hlen, len, prec);

    _acb_vec_clear(z, len);
    _arb_vec_clear(t, len);
    _arb_vec_clear(u, len);
    acb_clear(cs);
    acb_clear(ca);
}

void
arb_poly_zeta_series(arb_poly_t res, const arb_poly_t f, const arb_t a, int deflate, slong n, slong prec)
{
    if (n == 0)
    {
        arb_poly_zero(res);
        return;
    }

    arb_poly_fit_length(res, n);

    if (f->length == 0)
    {
        arb_t t;
        arb_init(t);
        _arb_poly_zeta_series(res->coeffs, t, 1, a, deflate, n, prec);
        arb_clear(t);
    }
    else
    {
        _arb_poly_zeta_series(res->coeffs, f->coeffs, f->length, a, deflate, n, prec);
    }

    _arb_poly_set_length(res, n);
    _arb_poly_normalise(res);
}