File: 2f1_continuation.c

package info (click to toggle)
flint-arb 1%3A2.23.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,672 kB
  • sloc: ansic: 204,753; sh: 570; makefile: 287; python: 268
file content (255 lines) | stat: -rw-r--r-- 5,929 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
/*
    Copyright (C) 2015 Fredrik Johansson

    This file is part of Arb.

    Arb is free software: you can redistribute it and/or modify it under
    the terms of the GNU Lesser General Public License (LGPL) as published
    by the Free Software Foundation; either version 2.1 of the License, or
    (at your option) any later version.  See <http://www.gnu.org/licenses/>.
*/

#include "acb_hypgeom.h"

/* Differential equation for F(a,b,c,y+z):

   (y+z)(y-1+z) F''(z) + ((y+z)(a+b+1) - c) F'(z) + a b F(z) = 0

   Coefficients in the Taylor series are bounded by

       A * binomial(N+k, k) * nu^k

   using the Cauchy-Kovalevskaya majorant method.
   See J. van der Hoeven, "Fast evaluation of holonomic functions near
   and in regular singularities"
*/
static void
bound(mag_t A, mag_t nu, mag_t N,
    const acb_t a, const acb_t b, const acb_t c, const acb_t y,
    const acb_t f0, const acb_t f1)
{
    mag_t M0, M1, t, u;
    acb_t d;

    acb_init(d);
    mag_init(M0);
    mag_init(M1);
    mag_init(t);
    mag_init(u);

    /* nu = max(1/|y-1|, 1/|y|) = 1/min(|y-1|, |y|) */
    acb_get_mag_lower(t, y);
    acb_sub_ui(d, y, 1, MAG_BITS);
    acb_get_mag_lower(u, d);
    mag_min(t, t, u);
    mag_one(u);
    mag_div(nu, u, t);

    /* M0 = 2 nu |ab| */
    acb_get_mag(t, a);
    acb_get_mag(u, b);
    mag_mul(M0, t, u);
    mag_mul(M0, M0, nu);
    mag_mul_2exp_si(M0, M0, 1);

    /* M1 = nu |a+b+1| + 2|c| */
    acb_add(d, a, b, MAG_BITS);
    acb_add_ui(d, d, 1, MAG_BITS);
    acb_get_mag(t, d);
    mag_mul(t, t, nu);

    acb_get_mag(u, c);
    mag_mul_2exp_si(u, u, 1);
    mag_add(M1, t, u);

    /* N = max(sqrt(2 M0), 2 M1) / nu */
    mag_mul_2exp_si(M0, M0, 1);
    mag_sqrt(M0, M0);
    mag_mul_2exp_si(M1, M1, 1);
    mag_max(N, M0, M1);
    mag_div(N, N, nu);

    /* A = max(|f0|, |f1| / (nu (N+1)) */
    acb_get_mag(t, f0);
    acb_get_mag(u, f1);
    mag_div(u, u, nu);
    mag_div(u, u, N);  /* upper bound for dividing by N+1 */
    mag_max(A, t, u);

    acb_clear(d);
    mag_clear(M0);
    mag_clear(M1);
    mag_clear(t);
    mag_clear(u);
}

/* 
   F(x)  = c0   +     c1 x    +     c2 x^2   +     c3 x^3    +    [...]
   F'(x) = c1   +   2 c2 x    +   3 c3 x^2   +   4 c4 x^3    +    [...]
*/
static void
evaluate_sum(acb_t res, acb_t res1,
    const acb_t a, const acb_t b, const acb_t c, const acb_t y,
    const acb_t x, const acb_t f0, const acb_t f1, slong num, slong prec)
{
    acb_t s, s2, w, d, e, xpow, ck, cknext;
    slong k;

    acb_init(s);
    acb_init(s2);
    acb_init(w);
    acb_init(d);
    acb_init(e);
    acb_init(xpow);
    acb_init(ck);
    acb_init(cknext);

    /* d = (y-1)*y */
    acb_sub_ui(d, y, 1, prec);
    acb_mul(d, d, y, prec);
    acb_one(xpow);

    for (k = 0; k < num; k++)
    {
        if (k == 0)
        {
            acb_set(ck, f0);
            acb_set(cknext, f1);
        }
        else
        {
            acb_add_ui(w, b, k-1, prec);
            acb_mul(w, w, ck, prec);
            acb_add_ui(e, a, k-1, prec);
            acb_mul(w, w, e, prec);

            acb_add(e, a, b, prec);
            acb_add_ui(e, e, 2*(k+1)-3, prec);
            acb_mul(e, e, y, prec);
            acb_sub(e, e, c, prec);
            acb_sub_ui(e, e, k-1, prec);
            acb_mul_ui(e, e, k, prec);
            acb_addmul(w, e, cknext, prec);

            acb_mul_ui(e, d, k+1, prec);
            acb_mul_ui(e, e, k, prec);
            acb_div(w, w, e, prec);
            acb_neg(w, w);

            acb_set(ck, cknext);
            acb_set(cknext, w);
        }

        acb_addmul(s, ck, xpow, prec);
        acb_mul_ui(w, cknext, k+1, prec);
        acb_addmul(s2, w, xpow, prec);

        acb_mul(xpow, xpow, x, prec);
    }

    acb_set(res, s);
    acb_set(res1, s2);

    acb_clear(s);
    acb_clear(s2);
    acb_clear(w);
    acb_clear(d);
    acb_clear(e);
    acb_clear(xpow);
    acb_clear(ck);
    acb_clear(cknext);
}

void
acb_hypgeom_2f1_continuation(acb_t res, acb_t res1,
    const acb_t a, const acb_t b, const acb_t c, const acb_t y,
    const acb_t z, const acb_t f0, const acb_t f1, slong prec)
{
    mag_t A, nu, N, w, err, err1, R, T, goal;
    acb_t x;
    slong j, k;

    mag_init(A);
    mag_init(nu);
    mag_init(N);
    mag_init(err);
    mag_init(err1);
    mag_init(w);
    mag_init(R);
    mag_init(T);
    mag_init(goal);
    acb_init(x);

    bound(A, nu, N, a, b, c, y, f0, f1);

    acb_sub(x, z, y, prec);

    /* |T(k)| <= A * binomial(N+k, k) * nu^k * |x|^k */
    acb_get_mag(w, x);
    mag_mul(w, w, nu); /* w = nu |x| */
    mag_mul_2exp_si(goal, A, -prec-2);

    /* bound for T(0) */
    mag_set(T, A);
    mag_inf(R);

    for (k = 1; k < 100 * prec; k++)
    {
        /* T(k) = T(k) * R(k), R(k) = (N+k)/k * w = (1 + N/k) w */
        mag_div_ui(R, N, k);
        mag_add_ui(R, R, 1);
        mag_mul(R, R, w);

        /* T(k) */
        mag_mul(T, T, R);

        if (mag_cmp(T, goal) <= 0 && mag_cmp_2exp_si(R, 0) < 0)
            break;
    }

    /* T(k) [1 + R + R^2 + R^3 + ...] */
    mag_geom_series(err, R, 0);
    mag_mul(err, T, err);

    /* Now compute T, R for the derivative */
    /* Coefficients are A * (k+1) * binomial(N+k+1, k+1) */
    mag_add_ui(T, N, 1);
    mag_mul(T, T, A);
    mag_inf(R);

    for (j = 1; j <= k; j++)
    {
        mag_add_ui(R, N, k + 1);
        mag_div_ui(R, R, k);
        mag_mul(R, R, w);
        mag_mul(T, T, R);
    }

    mag_geom_series(err1, R, 0);
    mag_mul(err1, T, err1);

    if (mag_is_inf(err))
    {
        acb_indeterminate(res);
        acb_indeterminate(res1);
    }
    else
    {
        evaluate_sum(res, res1, a, b, c, y, x, f0, f1, k, prec);

        acb_add_error_mag(res, err);
        acb_add_error_mag(res1, err1);
    }

    mag_clear(A);
    mag_clear(nu);
    mag_clear(N);
    mag_clear(err);
    mag_clear(err1);
    mag_clear(w);
    mag_clear(R);
    mag_clear(T);
    mag_clear(goal);
    acb_clear(x);
}