1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
/*
Copyright (C) 2015 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "acb_hypgeom.h"
/* Differential equation for F(a,b,c,y+z):
(y+z)(y-1+z) F''(z) + ((y+z)(a+b+1) - c) F'(z) + a b F(z) = 0
Coefficients in the Taylor series are bounded by
A * binomial(N+k, k) * nu^k
using the Cauchy-Kovalevskaya majorant method.
See J. van der Hoeven, "Fast evaluation of holonomic functions near
and in regular singularities"
*/
static void
bound(mag_t A, mag_t nu, mag_t N,
const acb_t a, const acb_t b, const acb_t c, const acb_t y,
const acb_t f0, const acb_t f1)
{
mag_t M0, M1, t, u;
acb_t d;
acb_init(d);
mag_init(M0);
mag_init(M1);
mag_init(t);
mag_init(u);
/* nu = max(1/|y-1|, 1/|y|) = 1/min(|y-1|, |y|) */
acb_get_mag_lower(t, y);
acb_sub_ui(d, y, 1, MAG_BITS);
acb_get_mag_lower(u, d);
mag_min(t, t, u);
mag_one(u);
mag_div(nu, u, t);
/* M0 = 2 nu |ab| */
acb_get_mag(t, a);
acb_get_mag(u, b);
mag_mul(M0, t, u);
mag_mul(M0, M0, nu);
mag_mul_2exp_si(M0, M0, 1);
/* M1 = nu |a+b+1| + 2|c| */
acb_add(d, a, b, MAG_BITS);
acb_add_ui(d, d, 1, MAG_BITS);
acb_get_mag(t, d);
mag_mul(t, t, nu);
acb_get_mag(u, c);
mag_mul_2exp_si(u, u, 1);
mag_add(M1, t, u);
/* N = max(sqrt(2 M0), 2 M1) / nu */
mag_mul_2exp_si(M0, M0, 1);
mag_sqrt(M0, M0);
mag_mul_2exp_si(M1, M1, 1);
mag_max(N, M0, M1);
mag_div(N, N, nu);
/* A = max(|f0|, |f1| / (nu (N+1)) */
acb_get_mag(t, f0);
acb_get_mag(u, f1);
mag_div(u, u, nu);
mag_div(u, u, N); /* upper bound for dividing by N+1 */
mag_max(A, t, u);
acb_clear(d);
mag_clear(M0);
mag_clear(M1);
mag_clear(t);
mag_clear(u);
}
/*
F(x) = c0 + c1 x + c2 x^2 + c3 x^3 + [...]
F'(x) = c1 + 2 c2 x + 3 c3 x^2 + 4 c4 x^3 + [...]
*/
static void
evaluate_sum(acb_t res, acb_t res1,
const acb_t a, const acb_t b, const acb_t c, const acb_t y,
const acb_t x, const acb_t f0, const acb_t f1, slong num, slong prec)
{
acb_t s, s2, w, d, e, xpow, ck, cknext;
slong k;
acb_init(s);
acb_init(s2);
acb_init(w);
acb_init(d);
acb_init(e);
acb_init(xpow);
acb_init(ck);
acb_init(cknext);
/* d = (y-1)*y */
acb_sub_ui(d, y, 1, prec);
acb_mul(d, d, y, prec);
acb_one(xpow);
for (k = 0; k < num; k++)
{
if (k == 0)
{
acb_set(ck, f0);
acb_set(cknext, f1);
}
else
{
acb_add_ui(w, b, k-1, prec);
acb_mul(w, w, ck, prec);
acb_add_ui(e, a, k-1, prec);
acb_mul(w, w, e, prec);
acb_add(e, a, b, prec);
acb_add_ui(e, e, 2*(k+1)-3, prec);
acb_mul(e, e, y, prec);
acb_sub(e, e, c, prec);
acb_sub_ui(e, e, k-1, prec);
acb_mul_ui(e, e, k, prec);
acb_addmul(w, e, cknext, prec);
acb_mul_ui(e, d, k+1, prec);
acb_mul_ui(e, e, k, prec);
acb_div(w, w, e, prec);
acb_neg(w, w);
acb_set(ck, cknext);
acb_set(cknext, w);
}
acb_addmul(s, ck, xpow, prec);
acb_mul_ui(w, cknext, k+1, prec);
acb_addmul(s2, w, xpow, prec);
acb_mul(xpow, xpow, x, prec);
}
acb_set(res, s);
acb_set(res1, s2);
acb_clear(s);
acb_clear(s2);
acb_clear(w);
acb_clear(d);
acb_clear(e);
acb_clear(xpow);
acb_clear(ck);
acb_clear(cknext);
}
void
acb_hypgeom_2f1_continuation(acb_t res, acb_t res1,
const acb_t a, const acb_t b, const acb_t c, const acb_t y,
const acb_t z, const acb_t f0, const acb_t f1, slong prec)
{
mag_t A, nu, N, w, err, err1, R, T, goal;
acb_t x;
slong j, k;
mag_init(A);
mag_init(nu);
mag_init(N);
mag_init(err);
mag_init(err1);
mag_init(w);
mag_init(R);
mag_init(T);
mag_init(goal);
acb_init(x);
bound(A, nu, N, a, b, c, y, f0, f1);
acb_sub(x, z, y, prec);
/* |T(k)| <= A * binomial(N+k, k) * nu^k * |x|^k */
acb_get_mag(w, x);
mag_mul(w, w, nu); /* w = nu |x| */
mag_mul_2exp_si(goal, A, -prec-2);
/* bound for T(0) */
mag_set(T, A);
mag_inf(R);
for (k = 1; k < 100 * prec; k++)
{
/* T(k) = T(k) * R(k), R(k) = (N+k)/k * w = (1 + N/k) w */
mag_div_ui(R, N, k);
mag_add_ui(R, R, 1);
mag_mul(R, R, w);
/* T(k) */
mag_mul(T, T, R);
if (mag_cmp(T, goal) <= 0 && mag_cmp_2exp_si(R, 0) < 0)
break;
}
/* T(k) [1 + R + R^2 + R^3 + ...] */
mag_geom_series(err, R, 0);
mag_mul(err, T, err);
/* Now compute T, R for the derivative */
/* Coefficients are A * (k+1) * binomial(N+k+1, k+1) */
mag_add_ui(T, N, 1);
mag_mul(T, T, A);
mag_inf(R);
for (j = 1; j <= k; j++)
{
mag_add_ui(R, N, k + 1);
mag_div_ui(R, R, k);
mag_mul(R, R, w);
mag_mul(T, T, R);
}
mag_geom_series(err1, R, 0);
mag_mul(err1, T, err1);
if (mag_is_inf(err))
{
acb_indeterminate(res);
acb_indeterminate(res1);
}
else
{
evaluate_sum(res, res1, a, b, c, y, x, f0, f1, k, prec);
acb_add_error_mag(res, err);
acb_add_error_mag(res1, err1);
}
mag_clear(A);
mag_clear(nu);
mag_clear(N);
mag_clear(err);
mag_clear(err1);
mag_clear(w);
mag_clear(R);
mag_clear(T);
mag_clear(goal);
acb_clear(x);
}
|