1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
/*
Copyright (C) 2015 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "acb_hypgeom.h"
void
arb_const_airy_ai0_eval(arb_t y, slong prec)
{
arb_t t; fmpq_t v; arb_init(t); fmpq_init(v);
arb_set_ui(y, 3);
arb_root_ui(y, y, 3, prec + 5); arb_mul(y, y, y, prec + 5);
fmpq_set_si(v, 2, 3); arb_gamma_fmpq(t, v, prec + 5);
arb_mul(y, y, t, prec + 5);
arb_inv(y, y, prec);
arb_clear(t); fmpq_clear(v);
}
void
arb_const_airy_ai1_eval(arb_t y, slong prec)
{
arb_t t; fmpq_t v; arb_init(t); fmpq_init(v);
arb_set_ui(y, 3);
arb_root_ui(y, y, 3, prec + 5);
fmpq_set_si(v, 1, 3); arb_gamma_fmpq(t, v, prec + 5);
arb_mul(y, y, t, prec + 5);
arb_inv(y, y, prec); arb_neg(y, y);
arb_clear(t); fmpq_clear(v);
}
void
arb_const_airy_bi0_eval(arb_t y, slong prec)
{
arb_t t; fmpq_t v; arb_init(t); fmpq_init(v);
arb_set_ui(y, 3);
arb_root_ui(y, y, 6, prec + 5);
fmpq_set_si(v, 2, 3); arb_gamma_fmpq(t, v, prec + 5);
arb_mul(y, y, t, prec + 5);
arb_inv(y, y, prec);
arb_clear(t); fmpq_clear(v);
}
void
arb_const_airy_bi1_eval(arb_t y, slong prec)
{
arb_t t; fmpq_t v; arb_init(t); fmpq_init(v);
arb_set_ui(y, 3);
arb_root_ui(y, y, 6, prec + 5);
fmpq_set_si(v, 1, 3); arb_gamma_fmpq(t, v, prec + 5);
arb_div(y, y, t, prec);
arb_clear(t); fmpq_clear(v);
}
ARB_DEF_CACHED_CONSTANT(arb_const_airy_ai0, arb_const_airy_ai0_eval)
ARB_DEF_CACHED_CONSTANT(arb_const_airy_ai1, arb_const_airy_ai1_eval)
ARB_DEF_CACHED_CONSTANT(arb_const_airy_bi0, arb_const_airy_bi0_eval)
ARB_DEF_CACHED_CONSTANT(arb_const_airy_bi1, arb_const_airy_bi1_eval)
static void
acb_hypgeom_airy_0f1_sum_inner(acb_t s, acb_srcptr t, slong m, slong n, slong alpha, int real, slong prec)
{
slong j, k;
mp_limb_t c, chi, clo;
acb_zero(s);
/* not implemented (coefficient overflow) */
if (FLINT_BITS == 32 && n > 37000)
{
acb_indeterminate(s);
return;
}
c = 1;
j = (n - 1) % m;
for (k = n - 1; k >= 0; k--)
{
if (k != 0)
{
umul_ppmm(chi, clo, c, 3 * k + alpha);
if (chi == 0)
umul_ppmm(chi, clo, clo, k);
if (chi != 0)
{
acb_div_ui(s, s, c, prec);
c = 1;
}
}
if (real)
arb_addmul_ui(acb_realref(s), acb_realref(t + j), c, prec);
else
acb_addmul_ui(s, t + j, c, prec);
if (k != 0)
{
c = c * k * (3 * k + alpha);
if (j == 0)
{
acb_mul(s, s, t + m, prec);
j = m - 1;
}
else
{
j--;
}
}
}
acb_div_ui(s, s, c, prec);
}
/* s1 = 0F1(1/3, z/3)
s2 = 0F1(2/3, z/3)
s4 = 0F1(4/3, z/3)
s5 = 0F1(5/3, z/3) */
static void
acb_hypgeom_airy_0f1_sum(acb_t s1, acb_t s2, acb_t s4, acb_t s5, const acb_t z, slong n, int real, slong prec)
{
acb_ptr t;
slong m;
m = 2 * n_sqrt(n);
m = FLINT_MAX(m, 1);
t = _acb_vec_init(m + 1);
_acb_vec_set_powers(t, z, m + 1, prec);
if (s1 != NULL) acb_hypgeom_airy_0f1_sum_inner(s1, t, m, n, -2, real, prec);
if (s2 != NULL) acb_hypgeom_airy_0f1_sum_inner(s2, t, m, n, -1, real, prec);
if (s4 != NULL) acb_hypgeom_airy_0f1_sum_inner(s4, t, m, n, +1, real, prec);
if (s5 != NULL) acb_hypgeom_airy_0f1_sum_inner(s5, t, m, n, +2, real, prec);
_acb_vec_clear(t, m + 1);
}
void
acb_hypgeom_airy_direct(acb_t ai, acb_t aip, acb_t bi, acb_t bip, const acb_t z, slong n, slong prec)
{
mag_t err, wmag, tm;
int is_real;
acb_t s1, s2, s4, s5, t, u;
arb_t ai0, ai1, bi0, bi1;
mag_init(err);
mag_init(wmag);
mag_init(tm);
acb_init(s1);
acb_init(s2);
acb_init(s4);
acb_init(s5);
acb_init(t);
acb_init(u);
arb_init(ai0);
arb_init(ai1);
arb_init(bi0);
arb_init(bi1);
n = FLINT_MAX(n, 2);
is_real = acb_is_real(z);
acb_get_mag(wmag, z);
/*
With w = z^3/9, the terms are bounded by 3 w^n / [(n-1)!]^2.
3 w^n w w^2
---------- [ 1 + --- + ------- + ....]
((n-1)!)^2 n^2 (n+1)^2
*/
mag_pow_ui(wmag, wmag, 3);
mag_div_ui(wmag, wmag, 9);
mag_pow_ui(err, wmag, n);
mag_div_ui(tm, wmag, n);
mag_div_ui(tm, tm, n);
mag_geom_series(tm, tm, 0);
mag_mul(err, err, tm);
mag_rfac_ui(tm, n - 1);
mag_mul(tm, tm, tm);
mag_mul(err, err, tm);
mag_mul_ui(err, err, 3);
acb_cube(t, z, prec);
acb_div_ui(t, t, 3, prec);
acb_hypgeom_airy_0f1_sum(
(aip != NULL || bip != NULL) ? s1 : NULL,
(ai != NULL || bi != NULL) ? s2 : NULL,
(ai != NULL || bi != NULL) ? s4 : NULL,
(aip != NULL || bip != NULL) ? s5 : NULL, t, n, is_real, prec);
if (is_real)
{
arb_add_error_mag(acb_realref(s1), err);
arb_add_error_mag(acb_realref(s2), err);
arb_add_error_mag(acb_realref(s4), err);
arb_add_error_mag(acb_realref(s5), err);
}
else
{
acb_add_error_mag(s1, err);
acb_add_error_mag(s2, err);
acb_add_error_mag(s4, err);
acb_add_error_mag(s5, err);
}
if (ai != NULL || aip != NULL)
{
arb_const_airy_ai0(ai0, prec);
arb_const_airy_ai1(ai1, prec);
}
if (bi != NULL || bip != NULL)
{
arb_const_airy_bi0(bi0, prec);
arb_const_airy_bi1(bi1, prec);
}
/* support aliasing with z */
acb_set(t, z);
if (ai != NULL || bi != NULL)
{
acb_mul(u, s4, t, prec);
if (ai != NULL)
{
acb_mul_arb(ai, s2, ai0, prec);
acb_addmul_arb(ai, u, ai1, prec);
}
if (bi != NULL)
{
acb_mul_arb(bi, s2, bi0, prec);
acb_addmul_arb(bi, u, bi1, prec);
}
}
if (aip != NULL || bip != NULL)
{
acb_mul(u, t, t, prec);
acb_mul_2exp_si(u, u, -1);
acb_mul(u, u, s5, prec);
if (aip != NULL)
{
acb_mul_arb(aip, s1, ai1, prec);
acb_addmul_arb(aip, u, ai0, prec);
}
if (bip != NULL)
{
acb_mul_arb(bip, s1, bi1, prec);
acb_addmul_arb(bip, u, bi0, prec);
}
}
mag_clear(err);
mag_clear(wmag);
mag_clear(tm);
acb_clear(s1);
acb_clear(s2);
acb_clear(s4);
acb_clear(s5);
acb_clear(t);
acb_clear(u);
arb_clear(ai0);
arb_clear(ai1);
arb_clear(bi0);
arb_clear(bi1);
}
|