1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
/*
Copyright (C) 2017 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "arb_fmpz_poly.h"
#include "acb_dirichlet.h"
void
arb_fmpz_poly_gauss_period_minpoly(fmpz_poly_t res, ulong q, ulong n)
{
ulong k, d, e, g, gk, qinv;
ulong * es;
slong prec, initial_prec;
int done, real;
if (n == 0 || !n_is_prime(q) || ((q - 1) % n) != 0 ||
n_gcd(n, (q - 1) / n) != 1)
{
fmpz_poly_zero(res);
return;
}
d = (q - 1) / n;
/* this is much faster */
if (d == 1)
{
fmpz_poly_cyclotomic(res, q);
return;
}
g = n_primitive_root_prime(q);
qinv = n_preinvert_limb(q);
es = flint_malloc(sizeof(ulong) * d);
for (e = 0; e < d; e++)
es[e] = n_powmod2(g, n * e, q);
/* either all roots are real, or all roots are complex */
real = (n % 2) == 1;
/* first estimate precision crudely based on d and n */
initial_prec = n * log(2 * d) * 1.4426950408889 * 1.03 + 20;
initial_prec = FLINT_MAX(initial_prec, 48);
/* if high, start lower to get a good estimate */
if (initial_prec > 200)
initial_prec = 48;
for (prec = initial_prec, done = 0; !done; )
{
acb_dirichlet_roots_t zeta;
arb_poly_t pz;
arb_ptr roots;
acb_ptr croots;
acb_t t, u;
arb_t v;
acb_dirichlet_roots_init(zeta, q, (n * d) / 2, prec);
roots = _arb_vec_init(n);
croots = (acb_ptr) roots;
acb_init(t);
if (!real)
acb_init(u);
else
arb_init(v);
arb_poly_init(pz);
for (k = 0; k < (real ? n : n / 2); k++)
{
gk = n_powmod2(g, k, q);
if (real)
{
arb_zero(v);
for (e = 0; e < d / 2; e++)
{
acb_dirichlet_root(t, zeta, n_mulmod2_preinv(gk, es[e], q, qinv), prec);
arb_add(v, v, acb_realref(t), prec);
}
arb_mul_2exp_si(v, v, 1); /* compute conjugates */
arb_set(roots + k, v);
}
else
{
acb_zero(u);
for (e = 0; e < d; e++)
{
acb_dirichlet_root(t, zeta, n_mulmod2_preinv(gk, es[e], q, qinv), prec);
acb_add(u, u, t, prec);
}
if (arb_contains_zero(acb_imagref(u)))
{
/* todo: could increase precision */
flint_printf("fail! imaginary part should be nonzero\n");
flint_abort();
}
else
{
acb_set(croots + k, u);
}
}
}
if (real)
arb_poly_product_roots(pz, roots, n, prec);
else
arb_poly_product_roots_complex(pz, NULL, 0, croots, n / 2, prec);
done = arb_poly_get_unique_fmpz_poly(res, pz);
if (!done && prec == initial_prec)
{
mag_t m, mmax;
mag_init(m);
mag_init(mmax);
for (k = 0; k < n; k++)
{
arb_get_mag(m, pz->coeffs + k);
mag_max(mmax, mmax, m);
}
prec = mag_get_d_log2_approx(mmax) * 1.03 + 20;
if (prec < 2 * initial_prec)
prec = 2 * initial_prec;
mag_clear(m);
mag_clear(mmax);
}
else if (!done)
{
prec *= 2;
}
acb_dirichlet_roots_clear(zeta);
_arb_vec_clear(roots, n);
acb_clear(t);
if (!real)
acb_clear(u);
else
arb_clear(v);
arb_poly_clear(pz);
}
flint_free(es);
}
|