File: gauss_period_minpoly.c

package info (click to toggle)
flint-arb 1%3A2.23.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,672 kB
  • sloc: ansic: 204,753; sh: 570; makefile: 287; python: 268
file content (162 lines) | stat: -rw-r--r-- 4,117 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
/*
    Copyright (C) 2017 Fredrik Johansson

    This file is part of Arb.

    Arb is free software: you can redistribute it and/or modify it under
    the terms of the GNU Lesser General Public License (LGPL) as published
    by the Free Software Foundation; either version 2.1 of the License, or
    (at your option) any later version.  See <http://www.gnu.org/licenses/>.
*/

#include "arb_fmpz_poly.h"
#include "acb_dirichlet.h"

void
arb_fmpz_poly_gauss_period_minpoly(fmpz_poly_t res, ulong q, ulong n)
{
    ulong k, d, e, g, gk, qinv;
    ulong * es;
    slong prec, initial_prec;
    int done, real;

    if (n == 0 || !n_is_prime(q) || ((q - 1) % n) != 0 ||
            n_gcd(n, (q - 1) / n) != 1)
    {
        fmpz_poly_zero(res);
        return;
    }

    d = (q - 1) / n;

    /* this is much faster */
    if (d == 1)
    {
        fmpz_poly_cyclotomic(res, q);
        return;
    }

    g = n_primitive_root_prime(q);
    qinv = n_preinvert_limb(q);

    es = flint_malloc(sizeof(ulong) * d);

    for (e = 0; e < d; e++)
        es[e] = n_powmod2(g, n * e, q);

    /* either all roots are real, or all roots are complex */
    real = (n % 2) == 1;

    /* first estimate precision crudely based on d and n */
    initial_prec = n * log(2 * d) * 1.4426950408889 * 1.03 + 20;
    initial_prec = FLINT_MAX(initial_prec, 48);

    /* if high, start lower to get a good estimate */
    if (initial_prec > 200)
        initial_prec = 48;

    for (prec = initial_prec, done = 0; !done; )
    {
        acb_dirichlet_roots_t zeta;
        arb_poly_t pz;
        arb_ptr roots;
        acb_ptr croots;
        acb_t t, u;
        arb_t v;

        acb_dirichlet_roots_init(zeta, q, (n * d) / 2, prec);
        roots = _arb_vec_init(n);
        croots = (acb_ptr) roots;

        acb_init(t);
        if (!real)
            acb_init(u);
        else
            arb_init(v);
        arb_poly_init(pz);

        for (k = 0; k < (real ? n : n / 2); k++)
        {
            gk = n_powmod2(g, k, q);

            if (real)
            {
                arb_zero(v);

                for (e = 0; e < d / 2; e++)
                {
                    acb_dirichlet_root(t, zeta, n_mulmod2_preinv(gk, es[e], q, qinv), prec);
                    arb_add(v, v, acb_realref(t), prec);
                }

                arb_mul_2exp_si(v, v, 1);  /* compute conjugates */
                arb_set(roots + k, v);
            }
            else
            {
                acb_zero(u);

                for (e = 0; e < d; e++)
                {
                    acb_dirichlet_root(t, zeta, n_mulmod2_preinv(gk, es[e], q, qinv), prec);
                    acb_add(u, u, t, prec);
                }

                if (arb_contains_zero(acb_imagref(u)))
                {
                    /* todo: could increase precision */
                    flint_printf("fail! imaginary part should be nonzero\n");
                    flint_abort();
                }
                else
                {
                    acb_set(croots + k, u);
                }
            }
        }

        if (real)
            arb_poly_product_roots(pz, roots, n, prec);
        else
            arb_poly_product_roots_complex(pz, NULL, 0, croots, n / 2, prec);

        done = arb_poly_get_unique_fmpz_poly(res, pz);

        if (!done && prec == initial_prec)
        {
            mag_t m, mmax;
            mag_init(m);
            mag_init(mmax);

            for (k = 0; k < n; k++)
            {
                arb_get_mag(m, pz->coeffs + k);
                mag_max(mmax, mmax, m);
            }

            prec = mag_get_d_log2_approx(mmax) * 1.03 + 20;

            if (prec < 2 * initial_prec)
                prec = 2 * initial_prec;

            mag_clear(m);
            mag_clear(mmax);
        }
        else if (!done)
        {
            prec *= 2;
        }

        acb_dirichlet_roots_clear(zeta);
        _arb_vec_clear(roots, n);
        acb_clear(t);
        if (!real)
            acb_clear(u);
        else
            arb_clear(v);
        arb_poly_clear(pz);
    }

    flint_free(es);
}