1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
/*
Copyright (C) 2019 D.H.J. Polymath
Copyright (C) 2019 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "acb_dirichlet.h"
#include "arb_calc.h"
static void
_acb_set_arf(acb_t res, const arf_t t)
{
acb_zero(res);
arb_set_arf(acb_realref(res), t);
}
int
_acb_dirichlet_definite_hardy_z(arb_t res, const arf_t t, slong *pprec)
{
int msign;
acb_t z;
acb_init(z);
while (1)
{
_acb_set_arf(z, t);
acb_dirichlet_hardy_z(z, z, NULL, NULL, 1, *pprec);
msign = arb_sgn_nonzero(acb_realref(z));
if (msign)
{
break;
}
*pprec *= 2;
}
acb_get_real(res, z);
acb_clear(z);
return msign;
}
void
_refine_hardy_z_zero_illinois(arb_t res, const arf_t ra, const arf_t rb, slong prec)
{
arf_t a, b, fa, fb, c, fc, t;
arb_t z;
slong k, nmag, abs_tol, wp;
int asign, bsign, csign;
arf_init(a);
arf_init(b);
arf_init(c);
arf_init(fa);
arf_init(fb);
arf_init(fc);
arf_init(t);
arb_init(z);
arf_set(a, ra);
arf_set(b, rb);
nmag = arf_abs_bound_lt_2exp_si(b);
abs_tol = nmag - prec - 4;
wp = prec + nmag + 8;
asign = _acb_dirichlet_definite_hardy_z(z, a, &wp);
arf_set(fa, arb_midref(z));
bsign = _acb_dirichlet_definite_hardy_z(z, b, &wp);
arf_set(fb, arb_midref(z));
if (asign == bsign)
{
flint_printf("isolate a zero before bisecting the interval\n");
flint_abort();
}
for (k = 0; k < 40; k++)
{
/* c = a - fa * (b - a) / (fb - fa) */
arf_sub(c, b, a, wp, ARF_RND_NEAR);
arf_sub(t, fb, fa, wp, ARF_RND_NEAR);
arf_div(c, c, t, wp, ARF_RND_NEAR);
arf_mul(c, c, fa, wp, ARF_RND_NEAR);
arf_sub(c, a, c, wp, ARF_RND_NEAR);
/* if c is not sandwiched between a and b, improve precision
and fall back to one bisection step */
if (!arf_is_finite(c) ||
!((arf_cmp(a, c) < 0 && arf_cmp(c, b) < 0) ||
(arf_cmp(b, c) < 0 && arf_cmp(c, a) < 0)))
{
/* flint_printf("no sandwich (k = %wd)\n", k); */
wp += 32;
arf_add(c, a, b, ARF_PREC_EXACT, ARF_RND_DOWN);
arf_mul_2exp_si(c, c, -1);
}
csign = _acb_dirichlet_definite_hardy_z(z, c, &wp);
arf_set(fc, arb_midref(z));
if (csign != bsign)
{
arf_set(a, b);
arf_set(fa, fb);
asign = bsign;
arf_set(b, c);
arf_set(fb, fc);
bsign = csign;
}
else
{
arf_set(b, c);
arf_set(fb, fc);
bsign = csign;
arf_mul_2exp_si(fa, fa, -1);
}
arf_sub(t, a, b, wp, ARF_RND_DOWN);
arf_abs(t, t);
if (arf_cmpabs_2exp_si(t, abs_tol) < 0)
break;
}
/* a and b may have changed places */
if (arf_cmp(a, b) > 0)
arf_swap(a, b);
arb_set_interval_arf(res, a, b, prec);
arf_clear(a);
arf_clear(b);
arf_clear(c);
arf_clear(fa);
arf_clear(fb);
arf_clear(fc);
arf_clear(t);
arb_clear(z);
}
void
_refine_hardy_z_zero_newton(arb_t res, const arf_t ra, const arf_t rb, slong prec)
{
acb_t z, zstart;
acb_ptr v;
mag_t der1, der2, err;
slong nbits, initial_prec, extraprec, wp, step;
slong * steps;
acb_init(z);
acb_init(zstart);
v = _acb_vec_init(2);
mag_init(der1);
mag_init(der2);
mag_init(err);
nbits = arf_abs_bound_lt_2exp_si(rb);
extraprec = nbits + 10;
initial_prec = 3 * nbits + 30;
_refine_hardy_z_zero_illinois(acb_imagref(zstart), ra, rb, initial_prec);
arb_set_d(acb_realref(zstart), 0.5);
/* Real part is exactly 1/2, but need an epsilon-enclosure (for bounds)
since we work with the complex function. */
mag_set_ui_2exp_si(arb_radref(acb_realref(zstart)), 1, nbits - initial_prec - 4);
/* Bound |zeta''(zstart)| for Newton error bound. */
acb_dirichlet_zeta_deriv_bound(der1, der2, zstart);
steps = flint_malloc(sizeof(slong) * FLINT_BITS);
step = 0;
steps[step] = prec;
while (steps[step] / 2 + extraprec > initial_prec)
{
steps[step + 1] = steps[step] / 2 + extraprec;
step++;
}
acb_set(z, zstart);
for ( ; step >= 0; step--)
{
wp = steps[step] + extraprec;
mag_set(err, arb_radref(acb_imagref(z)));
acb_get_mid(z, z);
acb_dirichlet_zeta_jet(v, z, 0, 2, wp);
mag_mul(err, err, der2);
acb_add_error_mag(v + 1, err);
acb_div(v, v, v + 1, wp);
acb_sub(v, z, v, wp);
if (acb_contains(zstart, v))
{
acb_set(z, v);
arb_set_d(acb_realref(z), 0.5);
}
else
{
/* can this happen? should we fallback to illinois? */
flint_printf("no inclusion for interval newton!\n");
flint_abort();
}
}
arb_set(res, acb_imagref(z));
flint_free(steps);
acb_clear(z);
acb_clear(zstart);
_acb_vec_clear(v, 2);
mag_clear(der1);
mag_clear(der2);
mag_clear(err);
}
void
_acb_dirichlet_refine_hardy_z_zero(arb_t res,
const arf_t a, const arf_t b, slong prec)
{
slong bits;
arb_set_interval_arf(res, a, b, prec + 8);
bits = arb_rel_accuracy_bits(res);
if (bits < prec)
{
if (prec < 4 * arf_abs_bound_lt_2exp_si(b) + 40)
_refine_hardy_z_zero_illinois(res, a, b, prec);
else
_refine_hardy_z_zero_newton(res, a, b, prec);
}
arb_set_round(res, res, prec);
}
|