File: compose_divconquer.c

package info (click to toggle)
flint-arb 1%3A2.19.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 13,028 kB
  • sloc: ansic: 177,109; sh: 553; makefile: 288; python: 268
file content (182 lines) | stat: -rw-r--r-- 4,992 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/*
    Copyright (C) 2010 William Hart
    Copyright (C) 2012 Sebastian Pancratz
    Copyright (C) 2012 Fredrik Johansson

    This file is part of Arb.

    Arb is free software: you can redistribute it and/or modify it under
    the terms of the GNU Lesser General Public License (LGPL) as published
    by the Free Software Foundation; either version 2.1 of the License, or
    (at your option) any later version.  See <http://www.gnu.org/licenses/>.
*/

#include "acb_poly.h"

void
_acb_poly_compose_divconquer(acb_ptr res, acb_srcptr poly1, slong len1,
                                          acb_srcptr poly2, slong len2, slong prec)
{
    slong i, j, k, n;
    slong *hlen, alloc, powlen;
    acb_ptr v, pow, temp;
    acb_ptr * h;

    if (len1 == 1)
    {
        acb_set(res, poly1);
        return;
    }
    if (len2 == 1)
    {
        _acb_poly_evaluate(res, poly1, len1, poly2, prec);
        return;
    }
    if (len1 == 2)
    {
        _acb_poly_compose_horner(res, poly1, len1, poly2, len2, prec);
        return;
    }

    /* Initialisation */
    
    hlen = (slong *) flint_malloc(((len1 + 1) / 2) * sizeof(slong));
    
    for (k = 1; (2 << k) < len1; k++) ;
    
    hlen[0] = hlen[1] = ((1 << k) - 1) * (len2 - 1) + 1;
    for (i = k - 1; i > 0; i--)
    {
        slong hi = (len1 + (1 << i) - 1) / (1 << i);
        for (n = (hi + 1) / 2; n < hi; n++)
            hlen[n] = ((1 << i) - 1) * (len2 - 1) + 1;
    }
    powlen = (1 << k) * (len2 - 1) + 1;
    
    alloc = 0;
    for (i = 0; i < (len1 + 1) / 2; i++)
        alloc += hlen[i];

    v = _acb_vec_init(alloc + 2 * powlen);
    h = (acb_ptr *) flint_malloc(((len1 + 1) / 2) * sizeof(acb_ptr));
    h[0] = v;
    for (i = 0; i < (len1 - 1) / 2; i++)
    {
        h[i + 1] = h[i] + hlen[i];
        hlen[i] = 0;
    }
    hlen[(len1 - 1) / 2] = 0;
    pow = v + alloc;
    temp = pow + powlen;
    
    /* Let's start the actual work */
    
    for (i = 0, j = 0; i < len1 / 2; i++, j += 2)
    {
        if (!acb_is_zero(poly1 + j + 1))
        {
            _acb_vec_scalar_mul(h[i], poly2, len2, poly1 + j + 1, prec);
            acb_add(h[i], h[i], poly1 + j, prec);
            hlen[i] = len2;
        }
        else if (!acb_is_zero(poly1 + j))
        {
            acb_set(h[i], poly1 + j);
            hlen[i] = 1;
        }
    }
    if ((len1 & WORD(1)))
    {
        if (!acb_is_zero(poly1 + j))
        {
            acb_set(h[i], poly1 + j);
            hlen[i] = 1;
        }
    }
    
    _acb_poly_mul(pow, poly2, len2, poly2, len2, prec);
    powlen = 2 * len2 - 1;
    
    for (n = (len1 + 1) / 2; n > 2; n = (n + 1) / 2)
    {
        if (hlen[1] > 0)
        {
            slong templen = powlen + hlen[1] - 1;
            _acb_poly_mul(temp, pow, powlen, h[1], hlen[1], prec);
            _acb_poly_add(h[0], temp, templen, h[0], hlen[0], prec);
            hlen[0] = FLINT_MAX(hlen[0], templen);
        }
        
        for (i = 1; i < n / 2; i++)
        {
            if (hlen[2*i + 1] > 0)
            {
                _acb_poly_mul(h[i], pow, powlen, h[2*i + 1], hlen[2*i + 1], prec);
                hlen[i] = hlen[2*i + 1] + powlen - 1;
            } else
                hlen[i] = 0;
            _acb_poly_add(h[i], h[i], hlen[i], h[2*i], hlen[2*i], prec);
            hlen[i] = FLINT_MAX(hlen[i], hlen[2*i]);
        }
        if ((n & WORD(1)))
        {
            _acb_vec_set(h[i], h[2*i], hlen[2*i]);
            hlen[i] = hlen[2*i];
        }
        
        _acb_poly_mul(temp, pow, powlen, pow, powlen, prec);
        powlen += powlen - 1;
        {
            acb_ptr t = pow;
            pow = temp;
            temp = t;
        }
    }

    _acb_poly_mul(res, pow, powlen, h[1], hlen[1], prec);
    _acb_vec_add(res, res, h[0], hlen[0], prec);
    
    _acb_vec_clear(v, alloc + 2 * powlen);
    flint_free(h);
    flint_free(hlen);
}

void
acb_poly_compose_divconquer(acb_poly_t res,
                             const acb_poly_t poly1, const acb_poly_t poly2, slong prec)
{
    const slong len1 = poly1->length;
    const slong len2 = poly2->length;
    
    if (len1 == 0)
    {
        acb_poly_zero(res);
    }
    else if (len1 == 1 || len2 == 0)
    {
        acb_poly_set_acb(res, poly1->coeffs);
    }
    else
    {
        const slong lenr = (len1 - 1) * (len2 - 1) + 1;
        
        if (res != poly1 && res != poly2)
        {
            acb_poly_fit_length(res, lenr);
            _acb_poly_compose_divconquer(res->coeffs, poly1->coeffs, len1,
                                                   poly2->coeffs, len2, prec);
        }
        else
        {
            acb_poly_t t;
            acb_poly_init2(t, lenr);
            _acb_poly_compose_divconquer(t->coeffs, poly1->coeffs, len1,
                                                 poly2->coeffs, len2, prec);
            acb_poly_swap(res, t);
            acb_poly_clear(t);
        }

        _acb_poly_set_length(res, lenr);
        _acb_poly_normalise(res);
    }
}