File: hrr_sum_arb.c

package info (click to toggle)
flint-arb 2.8.1-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 9,124 kB
  • ctags: 4,168
  • sloc: ansic: 109,752; sh: 566; makefile: 293; python: 251
file content (356 lines) | stat: -rw-r--r-- 8,782 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
/*=============================================================================

    This file is part of ARB.

    ARB is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    ARB is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with ARB; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

=============================================================================*/
/******************************************************************************

    Copyright (C) 2013 Fredrik Johansson

******************************************************************************/

#include "partitions.h"

#include "flint/arith.h"
#include "arb.h"
#include "math.h"

#define DOUBLE_CUTOFF 40
#define DOUBLE_ERR 1e-12

#define DOUBLE_PREC 53
#define MIN_PREC 20
#define PI 3.141592653589793238462643
#define INV_LOG2 (1.44269504088896340735992468 + 1e-12)
#define HRR_A (1.1143183348516376904 + 1e-12)  /* 44*pi^2/(225*sqrt(3)) */
#define HRR_B (0.0592384391754448833 + 1e-12)  /* pi*sqrt(2)/75 */
#define HRR_C (2.5650996603237281911 + 1e-12)  /* pi*sqrt(2/3) */
#define HRR_D (1.2424533248940001551 + 1e-12)  /* log(2) + log(3)/2 */

static double
partitions_remainder_bound(double n, double terms)
{
    return HRR_A/sqrt(terms)
            + HRR_B*sqrt(terms/(n-1)) * sinh(HRR_C * sqrt(n)/terms);
}

/* Crude upper bound, sufficient to estimate the precision */
static double
log_sinh(double x)
{
    if (x > 4)
        return x;
    else
        return log(x) + x*x*(1/6.);
}

static double
partitions_remainder_bound_log2(double n, double N)
{
    double t1, t2;

    t1 = log(HRR_A) - 0.5*log(N);
    t2 = log(HRR_B) + 0.5*(log(N) - log(n-1)) + log_sinh(HRR_C * sqrt(n)/N);

    return (FLINT_MAX(t1, t2) + 1) * INV_LOG2;
}

slong
partitions_hrr_needed_terms(double n)
{
    slong N;
    for (N = 1; partitions_remainder_bound_log2(n, N) > 10; N++);
    for ( ; partitions_remainder_bound(n, N) > 0.4; N++);
    return N;
}

static double
partitions_term_bound(double n, double k)
{
    return ((PI*sqrt(24*n-1) / (6.0*k)) + HRR_D - log(24.0*n-1) + 0.5*log(k)) * INV_LOG2;
}

/* Bound number of prime factors in k */
static mp_limb_t primorial_tab[] = {
    1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870,
#if FLINT64
    UWORD(6469693230), UWORD(200560490130), UWORD(7420738134810), 
    UWORD(304250263527210), UWORD(13082761331670030), UWORD(614889782588491410)
#endif
};

static __inline__ int
bound_primes(ulong k)
{
    int i;

    for (i = 0; i < sizeof(primorial_tab) / sizeof(mp_limb_t); i++)
        if (k <= primorial_tab[i])
            return i;

    return i;
}


static __inline__ long
log2_ceil(double x)
{
    /* ceil(log2(n)) = bitcount(n-1);
       this is too large if x is a power of two */
    return FLINT_BIT_COUNT((slong) x);
}

static slong
partitions_prec_bound(double n, slong k, slong N)
{
    slong prec;

    prec = partitions_term_bound(n, k);
    prec += log2_ceil(8 * N * (26 * (sqrt(n) / k) + 7 * bound_primes(k) + 22));

    return prec;
}

static double
cos_pi_pq(mp_limb_signed_t p, mp_limb_signed_t q)
{
    /* Force 0 <= p < q */
    p = FLINT_ABS(p);
    p %= (2 * q);
    if (p >= q)
        p = 2 * q - p;

    if (4 * p <= q)
        return cos(p * PI / q);
    else if (4 * p < 3 * q)
        return sin((q - 2*p) * PI / (2 * q));
    else
        return -cos((q - p) * PI / q);
}

static double
eval_trig_prod_d(trig_prod_t prod)
{
    int i;
    double s;
    mp_limb_t v;

    if (prod->prefactor == 0)
        return 0.0;

    s = prod->prefactor;

    v = n_gcd(FLINT_MAX(prod->sqrt_p, prod->sqrt_q),
              FLINT_MIN(prod->sqrt_p, prod->sqrt_q));
    prod->sqrt_p /= v;
    prod->sqrt_q /= v;

    if (prod->sqrt_p != 1)
        s *= sqrt(prod->sqrt_p);
    if (prod->sqrt_q != 1)
        s /= sqrt(prod->sqrt_q);

    for (i = 0; i < prod->n; i++)
        s *= cos_pi_pq(prod->cos_p[i], prod->cos_q[i]);

    return s;
}

static void
eval_trig_prod(arb_t sum, trig_prod_t prod, slong prec)
{
    int i;
    mp_limb_t v;
    arb_t t;

    if (prod->prefactor == 0)
    {
        arb_zero(sum);
        return;
    }

    arb_init(t);

    arb_set_si(sum, prod->prefactor);
    v = n_gcd(FLINT_MAX(prod->sqrt_p, prod->sqrt_q),
              FLINT_MIN(prod->sqrt_p, prod->sqrt_q));
    prod->sqrt_p /= v;
    prod->sqrt_q /= v;

    if (prod->sqrt_p != 1)
    {
        arb_sqrt_ui(t, prod->sqrt_p, prec);
        arb_mul(sum, sum, t, prec);
    }

    if (prod->sqrt_q != 1)
    {
        arb_rsqrt_ui(t, prod->sqrt_q, prec);
        arb_mul(sum, sum, t, prec);
    }

    for (i = 0; i < prod->n; i++)
    {
        fmpq_t pq;
        *fmpq_numref(pq) = prod->cos_p[i];
        *fmpq_denref(pq) = prod->cos_q[i];
        arb_cos_pi_fmpq(t, pq, prec);
        arb_mul(sum, sum, t, prec);
    }

    arb_clear(t);
}

static void
sinh_cosh_divk_precomp(arb_t sh, arb_t ch, arb_t ex, slong k, slong prec)
{
    arb_t t;
    arb_init(t);
    arb_set_round(t, ex, prec);
    arb_root_ui(ch, t, k, prec);
    /* The second term doesn't need full precision,
       but this doesn't affect performance that much... */
    arb_inv(t, ch, prec);
    arb_sub(sh, ch, t, prec);
    arb_add(ch, ch, t, prec);
    arb_mul_2exp_si(ch, ch, -1);
    arb_mul_2exp_si(sh, sh, -1);
    arb_clear(t);
}


void
partitions_hrr_sum_arb(arb_t x, const fmpz_t n, slong N0, slong N, int use_doubles)
{
    trig_prod_t prod;
    arb_t acc, C, t1, t2, t3, t4, exp1;
    fmpz_t n24;
    slong k, prec, res_prec, acc_prec, guard_bits;
    double nd, Cd;

    if (fmpz_cmp_ui(n, 2) <= 0)
    {
        abort();
    }

    nd = fmpz_get_d(n);

    /* compute initial precision */
    guard_bits = 2 * FLINT_BIT_COUNT(N) + 32;
    prec = partitions_remainder_bound_log2(nd, N0) + guard_bits;
    prec = FLINT_MAX(prec, DOUBLE_PREC);
    res_prec = acc_prec = prec;

    arb_init(acc);
    arb_init(C);
    arb_init(t1);
    arb_init(t2);
    arb_init(t3);
    arb_init(t4);
    arb_init(exp1);
    fmpz_init(n24);

    arb_zero(x);

    /* n24 = 24n - 1 */
    fmpz_set(n24, n);
    fmpz_mul_ui(n24, n24, 24);
    fmpz_sub_ui(n24, n24, 1);

    /* C = (pi/6) sqrt(24n-1) */
    arb_const_pi(t1, prec);
    arb_sqrt_fmpz(t2, n24, prec);
    arb_mul(t1, t1, t2, prec);
    arb_div_ui(C, t1, 6, prec);

    /* exp1 = exp(C) */
    arb_exp(exp1, C, prec);

    Cd = PI * sqrt(24*nd-1) / 6;

    for (k = N0; k <= N; k++)
    {
        trig_prod_init(prod);
        arith_hrr_expsum_factored(prod, k, fmpz_fdiv_ui(n, k));

        if (prod->prefactor != 0)
        {

            if (prec > MIN_PREC)
                prec = partitions_prec_bound(nd, k, N);

            prod->prefactor *= 4;
            prod->sqrt_p *= 3;
            prod->sqrt_q *= k;

            if (prec > DOUBLE_CUTOFF || !use_doubles)
            {
                /* Compute A_k(n) * sqrt(3/k) * 4 / (24*n-1) */
                eval_trig_prod(t1, prod, prec);
                arb_div_fmpz(t1, t1, n24, prec);

                /* Multiply by (cosh(z) - sinh(z)/z) where z = C / k */
                arb_set_round(t2, C, prec);
                arb_div_ui(t2, t2, k, prec);

                if (k < 35 && prec > 1000)
                    sinh_cosh_divk_precomp(t3, t4, exp1, k, prec);
                else
                    arb_sinh_cosh(t3, t4, t2, prec);

                arb_div(t3, t3, t2, prec);
                arb_sub(t2, t4, t3, prec);
                arb_mul(t1, t1, t2, prec);
            }
            else
            {
                double xx, zz, xxerr;

                xx = eval_trig_prod_d(prod) / (24*nd - 1);
                zz = Cd / k;
                xx = xx * (cosh(zz) - sinh(zz) / zz);

                xxerr = fabs(xx) * DOUBLE_ERR + DOUBLE_ERR;
                arf_set_d(arb_midref(t1), xx);
                mag_set_d(arb_radref(t1), xxerr);
            }

            /* Add to accumulator */
            arb_add(acc, acc, t1, acc_prec);

            if (acc_prec > 2 * prec + 32)
            {
                arb_add(x, x, acc, res_prec);
                arb_zero(acc);
                acc_prec = prec + 32;
            }
        }
    }

    arb_add(x, x, acc, res_prec);

    fmpz_clear(n24);
    arb_clear(acc);
    arb_clear(exp1);
    arb_clear(C);
    arb_clear(t1);
    arb_clear(t2);
    arb_clear(t3);
    arb_clear(t4);
}