File: arith.txt

package info (click to toggle)
flint 2.4.4-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 21,904 kB
  • ctags: 13,326
  • sloc: ansic: 208,848; cpp: 11,358; sh: 564; makefile: 250
file content (876 lines) | stat: -rw-r--r-- 36,536 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
/*=============================================================================

    This file is part of FLINT.

    FLINT is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    FLINT is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with FLINT; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA

=============================================================================*/
/******************************************************************************

    Copyright (C) 2010, 2011 Fredrik Johansson

******************************************************************************/

*******************************************************************************

    Primorials

*******************************************************************************

void arith_primorial(fmpz_t res, slong n)

    Sets \code{res} to ``$n$ primorial'' or $n \#$, the product of all prime 
    numbers less than or equal to $n$.

*******************************************************************************

    Harmonic numbers

*******************************************************************************

void _arith_harmonic_number(fmpz_t num, fmpz_t den, slong n)

    Sets \code{(num, den)} to the reduced numerator and denominator of
    the $n$-th harmonic number $H_n = 1 + 1/2 + 1/3 + \dotsb + 1/n$. The
    result is zero if $n \leq 0$.

    Table lookup is used for $H_n$ whose numerator and denominator 
    fit in single limb. For larger $n$, the function
    \code{flint_mpn_harmonic_odd_balanced()} is used.

void arith_harmonic_number(fmpq_t x, slong n)

    Sets \code{x} to the $n$-th harmonic number. This function is
    equivalent to \code{_arith_harmonic_number} apart from the output
    being a single \code{fmpq_t} variable.

*******************************************************************************

    Stirling numbers

*******************************************************************************

void arith_stirling_number_1u(fmpz_t s, slong n, slong k)

void arith_stirling_number_1(fmpz_t s, slong n, slong k)

void arith_stirling_number_2(fmpz_t s, slong n, slong k)

    Sets $s$ to $S(n,k)$ where $S(n,k)$ denotes an unsigned Stirling
    number of the first kind $|S_1(n, k)|$, a signed Stirling number 
    of the first kind $S_1(n, k)$, or a Stirling number of the second 
    kind $S_2(n, k)$.  The Stirling numbers are defined using the 
    generating functions
    \begin{align*}
        x_{(n)} & = \sum_{k=0}^n S_1(n,k) x^k \\
        x^{(n)} & = \sum_{k=0}^n |S_1(n,k)| x^k \\
        x^n     & = \sum_{k=0}^n S_2(n,k) x_{(k)}
    \end{align*}
    where $x_{(n)} = x(x-1)(x-2) \dotsm (x-n+1)$ is a falling factorial 
    and $x^{(n)} = x(x+1)(x+2) \dotsm (x+n-1)$ is a rising factorial.
    $S(n,k)$ is taken to be zero if $n < 0$ or $k < 0$.

    These three functions are useful for computing isolated Stirling 
    numbers efficiently. To compute a range of numbers, the vector or 
    matrix versions should generally be used.

void arith_stirling_number_1u_vec(fmpz * row, slong n, slong klen)
void arith_stirling_number_1_vec(fmpz * row, slong n, slong klen)
void arith_stirling_number_2_vec(fmpz * row, slong n, slong klen)

    Computes the row of Stirling numbers
    \code{S(n,0), S(n,1), S(n,2), ..., S(n,klen-1)}.

    To compute a full row, this function can be called with 
    \code{klen = n+1}. It is assumed that \code{klen} is at most $n + 1$.

void arith_stirling_number_1u_vec_next(fmpz * row, fmpz * prev, slong n,
    slong klen)

void arith_stirling_number_1_vec_next(fmpz * row, fmpz * prev, slong n,
    slong klen)

void arith_stirling_number_2_vec_next(fmpz * row, fmpz * prev, slong n,
    slong klen)

    Given the vector \code{prev} containing a row of Stirling numbers
    \code{S(n-1,0), S(n-1,1), S(n-1,2), ..., S(n-1,klen-1)}, computes
    and stores in the row argument 
    \code{S(n,0), S(n,1), S(n,2), ..., S(n,klen-1)}.

    If \code{klen} is greater than \code{n}, the output ends with
    \code{S(n,n) = 1} followed by \code{S(n,n+1) = S(n,n+2) = ... = 0}.
    In this case, the input only needs to have length \code{n-1};
    only the input entries up to \code{S(n-1,n-2)} are read.

    The \code{row} and \code{prev} arguments are permitted to be the 
    same, meaning that the row will be updated in-place.

void arith_stirling_matrix_1u(fmpz_mat_t mat)
void arith_stirling_matrix_1(fmpz_mat_t mat)
void arith_stirling_matrix_2(fmpz_mat_t mat)

    For an arbitrary $m$-by-$n$ matrix, writes the truncation of the
    infinite Stirling number matrix 

    \begin{lstlisting}
    row 0   : S(0,0)
    row 1   : S(1,0), S(1,1)
    row 2   : S(2,0), S(2,1), S(2,2)
    row 3   : S(3,0), S(3,1), S(3,2), S(3,3)
    \end{lstlisting}

    up to row $m-1$ and column $n-1$ inclusive. The upper triangular
    part of the matrix is zeroed.

    For any $n$, the $S_1$ and $S_2$ matrices thus obtained are 
    inverses of each other.

*******************************************************************************

    Bell numbers

*******************************************************************************

void arith_bell_number(fmpz_t b, ulong n)

    Sets $b$ to the Bell number $B_n$, defined as the
    number of partitions of a set with $n$ members. Equivalently,
    $B_n = \sum_{k=0}^n S_2(n,k)$ where $S_2(n,k)$ denotes a Stirling number
    of the second kind.

    This function automatically selects between table lookup, binary
    splitting, and the multimodular algorithm.

void arith_bell_number_bsplit(fmpz_t res, ulong n)

    Computes the Bell number $B_n$ by evaluating a precise truncation of
    the series $B_n = e^{-1} \sum_{k=0}^{\infty} \frac{k^n}{k!}$ using
    binary splitting.

void arith_bell_number_multi_mod(fmpz_t res, ulong n)

    Computes the Bell number $B_n$ using a multimodular algorithm.

    This function evaluates the Bell number modulo several limb-size
    primes using\\ \code{arith_bell_number_nmod} and reconstructs the integer
    value using the fast Chinese remainder algorithm.
    A bound for the number of needed primes is computed using
    \code{arith_bell_number_size}.

void arith_bell_number_vec(fmpz * b, slong n)

    Sets $b$ to the vector of Bell numbers $B_0, B_1, \ldots, B_{n-1}$
    inclusive. Automatically switches between the \code{recursive}
    and \code{multi_mod} algorithms depending on the size of $n$.

void arith_bell_number_vec_recursive(fmpz * b, slong n)

    Sets $b$ to the vector of Bell numbers $B_0, B_1, \ldots, B_{n-1}$
    inclusive. This function uses table lookup if $B_{n-1}$ fits in a
    single word, and a standard triangular recurrence otherwise.

void arith_bell_number_vec_multi_mod(fmpz * b, slong n)

    Sets $b$ to the vector of Bell numbers $B_0, B_1, \ldots, B_{n-1}$
    inclusive.

    This function evaluates the Bell numbers modulo several limb-size
    primes using\\ \code{arith_bell_number_nmod_vec} and reconstructs the 
    integer values using the fast Chinese remainder algorithm.
    A bound for the number of needed primes is computed using
    \code{arith_bell_number_size}.

mp_limb_t bell_number_nmod(ulong n, nmod_t mod)

    Computes the Bell number $B_n$ modulo a prime $p$ given by \code{mod}

    After handling special cases, we use the formula

    $$B_n = \sum_{k=0}^n \frac{(n-k)^n}{(n-k)!}
        \sum_{j=0}^k \frac{(-1)^j}{j!}.$$

    We arrange the operations in such a way that we only have to
    multiply (and not divide) in the main loop. As a further optimisation,
    we use sieving to reduce the number of powers that need to be
    evaluated. This results in $O(n)$ memory usage.

    The divisions by factorials require $n > p$, so we fall back to
    calling\\ \code{bell_number_nmod_vec_recursive} and reading off the
    last entry when $p \le n$.

void arith_bell_number_nmod_vec(mp_ptr b, slong n, nmod_t mod)

    Sets $b$ to the vector of Bell numbers $B_0, B_1, \ldots, B_{n-1}$
    inclusive modulo a prime $p$ given by \code{mod}. Automatically
    switches between the \code{recursive} and \code{series} algorithms
    depending on the size of $n$ and whether $p$ is large enough for the
    series algorithm to work.

void arith_bell_number_nmod_vec_recursive(mp_ptr b, slong n, nmod_t mod)

    Sets $b$ to the vector of Bell numbers $B_0, B_1, \ldots, B_{n-1}$
    inclusive modulo a prime $p$ given by \code{mod}. This function uses
    table lookup if $B_{n-1}$ fits in a single word, and a standard
    triangular recurrence otherwise.

void arith_bell_number_nmod_vec_series(mp_ptr b, slong n, nmod_t mod)

    Sets $b$ to the vector of Bell numbers $B_0, B_1, \ldots, B_{n-1}$
    inclusive modulo a prime $p$ given by \code{mod}. This function
    expands the exponential generating function
    $$\sum_{k=0}^{\infty} \frac{B_n}{n!} x^n = \exp(e^x-1).$$
    We require that $p \ge n$.

double arith_bell_number_size(ulong n)

    Returns $b$ such that $B_n < 2^{\lfloor b \rfloor}$, using the inequality
    $$B_n < \left(\frac{0.792n}{\log(n+1)}\right)^n$$
    which is given in \cite{BerTas2010}.

*******************************************************************************

    Bernoulli numbers and polynomials

*******************************************************************************

void _arith_bernoulli_number(fmpz_t num, fmpz_t den, ulong n)

    Sets \code{(num, den)} to the reduced numerator and denominator
    of the $n$-th Bernoulli number. As presently implemented,
    this function simply calls\\ \code{_arith_bernoulli_number_zeta}.

void arith_bernoulli_number(fmpq_t x, ulong n)

    Sets \code{x} to the $n$-th Bernoulli number. This function is
    equivalent to\\ \code{_arith_bernoulli_number} apart from the output
    being a single \code{fmpq_t} variable.

void _arith_bernoulli_number_vec(fmpz * num, fmpz * den, slong n)

    Sets the elements of \code{num} and \code{den} to the reduced
    numerators and denominators of the Bernoulli numbers
    $B_0, B_1, B_2, \ldots, B_{n-1}$ inclusive. This function automatically
    chooses between the \code{recursive}, \code{zeta} and \code{multi_mod}
    algorithms according to the size of $n$.

void arith_bernoulli_number_vec(fmpq * x, slong n)

    Sets the \code{x} to the vector of Bernoulli numbers
    $B_0, B_1, B_2, \ldots, B_{n-1}$ inclusive. This function is
    equivalent to \code{_arith_bernoulli_number_vec} apart
    from the output being a single \code{fmpq} vector.

void arith_bernoulli_number_denom(fmpz_t den, ulong n)

    Sets \code{den} to the reduced denominator of the $n$-th
    Bernoulli number $B_n$. For even $n$, the denominator is computed
    as the product of all primes $p$ for which $p - 1$ divides $n$;
    this property is a consequence of the von Staudt-Clausen theorem.
    For odd $n$, the denominator is trivial (\code{den} is set to 1 whenever
    $B_n = 0$). The initial sequence of values smaller than $2^{32}$ are
    looked up directly from a table.

double arith_bernoulli_number_size(ulong n)

    Returns $b$ such that $|B_n| < 2^{\lfloor b \rfloor}$, using the inequality
    $$|B_n| < \frac{4 n!}{(2\pi)^n}$$ and $n! \le (n+1)^{n+1} e^{-n}$.
    No special treatment is given to odd $n$. Accuracy is not guaranteed
    if $n > 10^{14}$.

void arith_bernoulli_polynomial(fmpq_poly_t poly, ulong n)

    Sets \code{poly} to the Bernoulli polynomial of degree $n$,
    $B_n(x) = \sum_{k=0}^n \binom{n}{k} B_k x^{n-k}$ where $B_k$
    is a Bernoulli number. This function basically calls
    \code{arith_bernoulli_number_vec} and then rescales the coefficients
    efficiently.

void _arith_bernoulli_number_zeta(fmpz_t num, fmpz_t den, ulong n)

    Sets \code{(num, den)} to the reduced numerator and denominator
    of the $n$-th Bernoulli number.

    This function first computes the exact denominator and a bound
    for the size of the numerator. It then computes an approximation
    of $|B_n| = 2n! \zeta(n) / (2 \pi)^n$ as a floating-point number
    and multiplies by the denominator to to obtain a real number
    that rounds to the exact numerator. For tiny $n$, the numerator
    is looked up from a table to avoid unnecessary overhead.

void _arith_bernoulli_number_vec_recursive(fmpz * num, fmpz * den, slong n)

    Sets the elements of \code{num} and \code{den} to the reduced
    numerators and denominators of $B_0, B_1, B_2, \ldots, B_{n-1}$
    inclusive.

    The first few entries are computed using \code{arith_bernoulli_number},
    and then Ramanujan's recursive formula expressing $B_m$ as a sum over
    $B_k$ for $k$ congruent to $m$ modulo 6 is applied repeatedly.

    To avoid costly GCDs, the numerators are transformed internally
    to a common denominator and all operations are performed using
    integer arithmetic. This makes the algorithm fast for small $n$,
    say $n < 1000$. The common denominator is calculated directly
    as the primorial of $n + 1$.

    %[1] http://en.wikipedia.org/w/index.php?
    %    title=Bernoulli_number&oldid=405938876

void _arith_bernoulli_number_vec_zeta(fmpz * num, fmpz * den, slong n)

    Sets the elements of \code{num} and \code{den} to the reduced
    numerators and denominators of $B_0, B_1, B_2, \ldots, B_{n-1}$
    inclusive. Uses repeated direct calls to\\
    \code{_arith_bernoulli_number_zeta}.

void _arith_bernoulli_number_vec_multi_mod(fmpz * num, fmpz * den, slong n)

    Sets the elements of \code{num} and \code{den} to the reduced
    numerators and denominators of $B_0, B_1, B_2, \ldots, B_{n-1}$
    inclusive. Uses the generating function 

    $$\frac{x^2}{\cosh(x)-1} = \sum_{k=0}^{\infty}
        \frac{(2-4k) B_{2k}}{(2k)!} x^{2k}$$

    which is evaluated modulo several limb-size primes using \code{nmod_poly}
    arithmetic to yield the numerators of the Bernoulli numbers after
    multiplication by the denominators and CRT reconstruction. This formula,
    given (incorrectly) in \citep{BuhlerCrandallSompolski1992}, saves about
    half of the time compared to the usual generating function $x/(e^x-1)$
    since the odd terms vanish.

*******************************************************************************

    Euler numbers and polynomials

    Euler numbers are the integers $E_n$ defined by
    $$\frac{1}{\cosh(t)} = \sum_{n=0}^{\infty} \frac{E_n}{n!} t^n.$$
    With this convention, the odd-indexed numbers are zero and the even
    ones alternate signs, viz.
    $E_0, E_1, E_2, \ldots = 1, 0, -1, 0, 5, 0, -61, 0, 1385, 0, \ldots$.
    The corresponding Euler polynomials are defined by
    $$\frac{2e^{xt}}{e^t+1} = \sum_{n=0}^{\infty} \frac{E_n(x)}{n!} t^n.$$

*******************************************************************************

void arith_euler_number(fmpz_t res, ulong n)

    Sets \code{res} to the Euler number $E_n$. Currently calls
    \code{_arith_euler_number_zeta}.

void arith_euler_number_vec(fmpz * res, slong n)

    Computes the Euler numbers $E_0, E_1, \dotsc, E_{n-1}$ for $n \geq 0$
    and stores the result in \code{res}, which must be an initialised
    \code{fmpz} vector of sufficient size.

    This function evaluates the even-index $E_k$ modulo several limb-size
    primes using the generating function and \code{nmod_poly} arithmetic.
    A tight bound for the number of needed primes is computed using
    \code{arith_euler_number_size}, and the final integer values are recovered
    using balanced CRT reconstruction.

double arith_euler_number_size(ulong n)

    Returns $b$ such that $|E_n| < 2^{\lfloor b \rfloor}$, using the inequality
    $$|E_n| < \frac{2^{n+2} n!}{\pi^{n+1}}$$ and $n! \le (n+1)^{n+1} e^{-n}$.
    No special treatment is given to odd $n$.
    Accuracy is not guaranteed if $n > 10^{14}$.

void euler_polynomial(fmpq_poly_t poly, ulong n)

    Sets \code{poly} to the Euler polynomial $E_n(x)$. Uses the formula
    $$E_n(x) = \frac{2}{n+1}\left(B_{n+1}(x) - 
        2^{n+1}B_{n+1}\left(\frac{x}{2}\right)\right),$$
    with the Bernoulli polynomial $B_{n+1}(x)$ evaluated once
    using \code{bernoulli_polynomial} and then rescaled.

void _arith_euler_number_zeta(fmpz_t res, ulong n)

    Sets \code{res} to the Euler number $E_n$. For even $n$, this function
    uses the relation $$|E_n| = \frac{2^{n+2} n!}{\pi^{n+1}} L(n+1)$$
    where $L(n+1)$ denotes the Dirichlet $L$-function with character
    $\chi = \{ 0, 1, 0, -1 \}$.

*******************************************************************************

    Legendre polynomials

*******************************************************************************

void arith_legendre_polynomial(fmpq_poly_t poly, ulong n)

    Sets \code{poly} to the $n$-th Legendre polynomial
    $$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} \left[
        \left(x^2-1\right)^n \right].$$
    The coefficients are calculated using a hypergeometric recurrence.
    To improve performance, the common denominator is computed in one step
    and the coefficients are evaluated using integer arithmetic. The
    denominator is given by
    $\gcd(n!,2^n) = 2^{\lfloor n/2 \rfloor + \lfloor n/4 \rfloor + \ldots}.$

void arith_chebyshev_t_polynomial(fmpz_poly_t poly, ulong n)

    Sets \code{poly} to the Chebyshev polynomial of the first kind $T_n(x)$,
    defined formally by $T_n(x) = \cos(n \cos^{-1}(x))$. The coefficients are
    calculated using a hypergeometric recurrence.

void arith_chebyshev_u_polynomial(fmpz_poly_t poly, ulong n)

    Sets \code{poly} to the Chebyshev polynomial of the first kind $U_n(x)$,
    which satisfies $(n+1) U_n(x) = T'_{n+1}(x)$.
    The coefficients are calculated using a hypergeometric recurrence.

*******************************************************************************

    Multiplicative functions

*******************************************************************************

void arith_euler_phi(fmpz_t res, const fmpz_t n)

    Sets \code{res} to the Euler totient function $\phi(n)$, counting the 
    number of positive integers less than or equal to $n$ that are coprime 
    to $n$.

int arith_moebius_mu(const fmpz_t n)

    Computes the Moebius function $\mu(n)$, which is defined as $\mu(n) = 0$ 
    if $n$ has a prime factor of multiplicity greater than $1$, $\mu(n) = -1$ 
    if $n$ has an odd number of distinct prime factors, and $\mu(n) = 1$ if 
    $n$ has an even number of distinct prime factors.  By convention, 
    $\mu(0) = 0$.

void arith_divisor_sigma(fmpz_t res, const fmpz_t n, ulong k)

    Sets \code{res} to $\sigma_k(n)$, the sum of $k$th powers of all 
    divisors of $n$.

void arith_divisors(fmpz_poly_t res, const fmpz_t n)

    Set the coefficients of the polynomial \code{res} to the divisors of $n$, 
    including $1$ and $n$ itself, in ascending order.

void arith_ramanujan_tau(fmpz_t res, const fmpz_t n)

    Sets \code{res} to the Ramanujan tau function $\tau(n)$ which is the 
    coefficient of $q^n$ in the series expansion of 
    $f(q) = q  \prod_{k \geq 1} \bigl(1 - q^k\bigr)^{24}$.

    We factor $n$ and use the identity $\tau(pq) = \tau(p) \tau(q)$ 
    along with the recursion 
    $\tau(p^{r+1}) = \tau(p) \tau(p^r) - p^{11} \tau(p^{r-1})$
    for prime powers.

    The base values $\tau(p)$ are obtained using the function 
    \code{arith_ramanujan_tau_series()}. Thus the speed of 
    \code{arith_ramanujan_tau()} depends on the largest prime factor of $n$.

    Future improvement:  optimise this function for small $n$, which 
    could be accomplished using a lookup table or by calling 
    \code{arith_ramanujan_tau_series()} directly.

void arith_ramanujan_tau_series(fmpz_poly_t res, slong n)

    Sets \code{res} to the polynomial with coefficients 
    $\tau(0),\tau(1), \dotsc, \tau(n-1)$, giving the initial $n$ terms 
    in the series expansion of
    $f(q) = q \prod_{k \geq 1} \bigl(1-q^k\bigr)^{24}$.

    We use the theta function identity

    \begin{equation*}
    f(q) = q  \Biggl( \sum_{k \geq 0} (-1)^k (2k+1) q^{k(k+1)/2} \Biggr)^8
    \end{equation*}

    which is evaluated using three squarings. The first squaring is done
    directly since the polynomial is very sparse at this point.


*******************************************************************************

    Cyclotomic polynomials

*******************************************************************************

void _arith_cyclotomic_polynomial(fmpz * a, ulong n, mp_ptr factors,
                                        slong num_factors, ulong phi)

    Sets \code{a} to the lower half of the cyclotomic polynomial $\Phi_n(x)$,
    given $n \ge 3$ which must be squarefree.

    A precomputed array containing the prime factors of $n$ must be provided,
    as well as the value of the Euler totient function $\phi(n)$ as \code{phi}.
    If $n$ is even, 2 must be the first factor in the list.

    The degree of $\Phi_n(x)$ is exactly $\phi(n)$. Only the low
    $(\phi(n) + 1) / 2$ coefficients are written; the high coefficients
    can be obtained afterwards by copying the low coefficients
    in reverse order, since  $\Phi_n(x)$ is a palindrome for $n \ne 1$.

    We use the sparse power series algorithm described as Algorithm 4
    \cite{ArnoldMonagan2011}. The algorithm is based on the identity

        $$\Phi_n(x) = \prod_{d|n} (x^d - 1)^{\mu(n/d)}.$$

    Treating the polynomial as a power series, the multiplications and
    divisions can be done very cheaply using repeated additions and
    subtractions. The complexity is $O(2^k \phi(n))$ where $k$ is the
    number of prime factors in $n$.

    To improve efficiency for small $n$, we treat the \code{fmpz}
    coefficients as machine integers when there is no risk of overflow.
    The following bounds are given in Table 6 of \cite{ArnoldMonagan2011}:

    For $n < 10163195$, the largest coefficient in any $\Phi_n(x)$
    has 27 bits, so machine arithmetic is safe on 32 bits.

    For $n < 169828113$, the largest coefficient in any $\Phi_n(x)$
    has 60 bits, so machine arithmetic is safe on 64 bits.

    Further, the coefficients are always $\pm 1$ or 0 if there are
    exactly two prime factors, so in this case machine arithmetic can be
    used as well.

    Finally, we handle two special cases: if there is exactly one prime
    factor $n = p$, then $\Phi_n(x) = 1 + x + x^2 + \ldots + x^{n-1}$,
    and if $n = 2m$, we use $\Phi_n(x) = \Phi_m(-x)$ to fall back
    to the case when $n$ is odd.

void arith_cyclotomic_polynomial(fmpz_poly_t poly, ulong n)

    Sets \code{poly} to the $n$th cyclotomic polynomial, defined as

        $$\Phi_n(x) = \prod_{\omega} (x-\omega)$$

    where $\omega$ runs over all the $n$th primitive roots of unity.

    We factor $n$ into $n = qs$ where $q$ is squarefree,
    and compute $\Phi_q(x)$. Then $\Phi_n(x) = \Phi_q(x^s)$.

void _arith_cos_minpoly(fmpz * coeffs, slong d, ulong n)

    For $n \ge 1$, sets \code{(coeffs, d+1)} to the minimal polynomial
    $\Psi_n(x)$ of $\cos(2 \pi / n)$, scaled to have integer coefficients
    by multiplying by $2^d$ ($2^{d-1}$ when $n$ is a power of two).

    The polynomial $\Psi_n(x)$ is described in \cite{WaktinsZeitlin1993}.
    As proved in that paper, the roots of $\Psi_n(x)$ for $n \ge 3$ are
    $\cos(2 \pi k / n)$ where $0 \le k < d$ and where $\gcd(k, n) = 1$.

    To calculate $\Psi_n(x)$, we compute the roots numerically with MPFR
    and use a balanced product tree to form a polynomial with fixed-point
    coefficients, i.e. an approximation of $2^p 2^d \Psi_n(x)$.

    To determine the precision $p$, we note that the coefficients
    in $\prod_{i=1}^d (x - \alpha)$ can be bounded by the central
    coefficient in the binomial expansion of $(x+1)^d$.

    When $n$ is an odd prime, we use a direct formula for the coefficients
    (\url{http://mathworld.wolfram.com/TrigonometryAngles.html}).

void arith_cos_minpoly(fmpz_poly_t poly, ulong n)

    Sets \code{poly} to the minimal polynomial $\Psi_n(x)$ of
    $\cos(2 \pi / n)$, scaled to have integer coefficients. This
    polynomial has degree 1 if $n = 1$ or $n = 2$, and
    degree $\phi(n) / 2$ otherwise.

    We allow $n = 0$ and define $\Psi_0 = 1$.


*******************************************************************************

    Swinnerton-Dyer polynomials

*******************************************************************************

void arith_swinnerton_dyer_polynomial(fmpz_poly_t poly, ulong n)

    Sets \code{poly} to the Swinnerton-Dyer polynomial $S_n$, defined as
    the integer polynomial
    $$S_n = \prod (x \pm \sqrt{2} \pm \sqrt{3}
        \pm \sqrt{5} \pm \ldots \pm \sqrt{p_n})$$
    where $p_n$ denotes the $n$-th prime number and all combinations
    of signs are taken. This polynomial has degree $2^n$ and is
    irreducible over the integers.


*******************************************************************************

    Landau's function

*******************************************************************************

void arith_landau_function_vec(fmpz * res, slong len)

    Computes the first \code{len} values of Landau's function $g(n)$
    starting with $g(0)$. Landau's function gives the largest order
    of an element of the symmetric group $S_n$.

    Implements the ``basic algorithm'' given in
    \cite{DelegliseNicolasZimmermann2009}. The running time is
    $O(n^{3/2} / \sqrt{\log n})$.


*******************************************************************************

    Dedekind sums

    Most of the definitions and relations used in the following section
    are given by Apostol \cite{Apostol1997}. The Dedekind sum $s(h,k)$ is
    defined for all integers $h$ and $k$ as

        $$s(h,k) = \sum_{i=1}^{k-1} \left(\left(\frac{i}{k}\right)\right)
                                    \left(\left(\frac{hi}{k}\right)\right)$$

    where 

        $$((x))=\begin{cases}
            x-\lfloor x\rfloor-1/2 &\mbox{if }
                x\in\mathbb{Q}\setminus\mathbb{Z}\\
            0 &\mbox{if }x\in\mathbb{Z}.
            \end{cases}$$

    If $0 < h < k$ and $(h,k) = 1$, this reduces to

        $$s(h,k) = \sum_{i=1}^{k-1} \frac{i}{k}
            \left(\frac{hi}{k}-\left\lfloor\frac{hi}{k}\right\rfloor
            -\frac{1}{2}\right).$$

    The main formula for evaluating the series above is the following.
    Letting $r_0 = k$, $r_1 = h$, $r_2, r_3, \ldots, r_n, r_{n+1} = 1$
    be the remainder sequence in the Euclidean algorithm for
    computing GCD of $h$ and $k$, 

        $$s(h,k) = \frac{1-(-1)^n}{8} - \frac{1}{12} \sum_{i=1}^{n+1}
            (-1)^i \left(\frac{1+r_i^2+r_{i-1}^2}{r_i r_{i-1}}\right).$$

    Writing $s(h,k) = p/q$, some useful properties employed are
    $|s| < k / 12$, $q | 6k$ and $2|p| < k^2$.

*******************************************************************************

void arith_dedekind_sum_naive(fmpq_t s, const fmpz_t h, const fmpz_t k)

    Computes $s(h,k)$ for arbitrary $h$ and $k$ using a straightforward
    implementation of the defining sum using \code{fmpz} arithmetic.
    This function is slow except for very small $k$ and is mainly
    intended to be used for testing purposes.

double arith_dedekind_sum_coprime_d(double h, double k)

    Returns an approximation of $s(h,k)$ computed by evaluating the
    remainder sequence sum using double-precision arithmetic.
    Assumes that $0 < h < k$ and $(h,k) = 1$, and that $h$, $k$ and
    their remainders can be represented exactly as doubles, e.g.
    $k < 2^{53}$.

    We give a rough error analysis with IEEE double precision arithmetic,
    assuming $2 k^2 < 2^{53}$. By assumption, the terms in the sum evaluate
    exactly apart from the division. Thus each term is bounded in magnitude
    by $2k$ and its absolute error is bounded by $k 2^{-52}$.
    By worst-case analysis of the Euclidean algorithm, we also know that
    no more than 40 terms will be added.

    It follows that the absolute error is at most $C k 2^{-53}$ for
    some constant $C$. If we multiply the output by $6 k$ in order
    to obtain an integer numerator, the order of magnitude of the error
    is around $6 C k^2 2^{-53}$, so rounding to the nearest integer gives
    a correct numerator whenever $k < 2^{26-d}$ for some small number of
    guard bits $d$. A computation has shown that $d = 5$ is sufficient,
    i.e. this function can be used for exact computation when
    $k < 2^{21} \approx 2 \times 10^6$. This bound can likely be improved.

void arith_dedekind_sum_coprime_large(fmpq_t s, const fmpz_t h, const fmpz_t k)

    Computes $s(h,k)$ for $h$ and $k$ satisfying $0 \le h \le k$ and
    $(h,k) = 1$. This function effectively evaluates the remainder
    sequence sum using \code{fmpz} arithmetic, without optimising for
    any special cases. To avoid rational arithmetic, we use
    the integer algorithm of Knuth \cite{Knuth1977}.

void arith_dedekind_sum_coprime(fmpq_t s, const fmpz_t h, const fmpz_t k)

    Computes $s(h,k)$ for $h$ and $k$ satisfying $0 \le h \le k$
    and $(h,k) = 1$.

    This function calls \code{arith_dedekind_sum_coprime_d} if $k$ is small
    enough for a double-precision estimate of the sum to yield a correct
    numerator upon multiplication by $6k$ and rounding to the nearest integer.
    Otherwise, it calls \code{arith_dedekind_sum_coprime_large}.

void arith_dedekind_sum(fmpq_t s, const fmpz_t h, const fmpz_t k)

    Computes $s(h,k)$ for arbitrary $h$ and $k$. If the caller
    can guarantee $0 < h < k$ and $(h,k) = 1$ ahead of time, it is always
    cheaper to call \code{arith_dedekind_sum_coprime}.

    This function uses the following identities to reduce the general
    case to the situation where $0 < h < k$ and $(h,k) = 1$:
    If $k \le 2$ or $h = 0$, $s(h,k) = 0$.
    If $h < 0$, $s(h,k) = -s(-h,k)$.
    For any $q > 0$, $s(qh,qk) = s(h,k)$.
    If $0 < k < h$ and $(h,k) = 1$,
    $s(h,k) = (1+h(h-3k)+k^2) / (12hk) - t(k,h).$

*******************************************************************************

    Number of partitions

*******************************************************************************

void arith_number_of_partitions_vec(fmpz * res, slong len)

    Computes first \code{len} values of the partition function $p(n)$
    starting with $p(0)$. Uses inversion of Euler's pentagonal series.

void arith_number_of_partitions_nmod_vec(mp_ptr res, slong len, nmod_t mod)

    Computes first \code{len} values of the partition function $p(n)$
    starting with $p(0)$, modulo the modulus defined by \code{mod}.
    Uses inversion of Euler's pentagonal series.

void arith_hrr_expsum_factored(trig_prod_t prod, mp_limb_t k, mp_limb_t n)

    Symbolically evaluates the exponential sum

        $$A_k(n) = \sum_{h=0}^{k-1}
            \exp\left(\pi i \left[ s(h,k) - \frac{2hn}{k}\right]\right)$$

    appearing in the Hardy-Ramanujan-Rademacher formula, where $s(h,k)$ is a
    Dedekind sum.

    Rather than evaluating the sum naively, we factor $A_k(n)$ into a
    product of cosines based on the prime factorisation of $k$. This
    process is based on the identities given in \cite{Whiteman1956}.

    The special \code{trig_prod_t} structure \code{prod} represents a
    product of cosines of rational arguments, multiplied by an algebraic
    prefactor. It must be pre-initialised with \code{trig_prod_init}.

    This function assumes that $24k$ and $24n$ do not overflow a single limb.
    If $n$ is larger, it can be pre-reduced modulo $k$, since $A_k(n)$
    only depends on the value of $n \bmod k$.

void arith_number_of_partitions_mpfr(mpfr_t x, ulong n)

    Sets the pre-initialised MPFR variable $x$ to the exact value of $p(n)$.
    The value is computed using the Hardy-Ramanujan-Rademacher formula.

    The precision of $x$ will be changed to allow $p(n)$ to be represented
    exactly. The interface of this function may be updated in the future
    to allow computing an approximation of $p(n)$ to smaller precision.

    The Hardy-Ramanujan-Rademacher formula is given with error bounds
    in \cite{Rademacher1937}. We evaluate it in the form

        $$p(n) = \sum_{k=1}^N B_k(n) U(C/k) + R(n,N)$$

    where

        $$U(x) = \cosh(x) + \frac{\sinh(x)}{x},
            \quad C = \frac{\pi}{6} \sqrt{24n-1}$$

        $$B_k(n) = \sqrt{\frac{3}{k}} \frac{4}{24n-1} A_k(n)$$

    and where $A_k(n)$ is a certain exponential sum. The remainder satisfies

        $$|R(n,N)| < \frac{44 \pi^2}{225 \sqrt{3}} N^{-1/2} +
            \frac{\pi \sqrt{2}}{75} \left(\frac{N}{n-1}\right)^{1/2}
            \sinh\left(\pi \sqrt{\frac{2}{3}} \frac{\sqrt{n}}{N} \right).$$

    We choose $N$ such that $|R(n,N)| < 0.25$, and a working precision
    at term $k$ such that the absolute error of the term is expected to be
    less than $0.25 / N$. We also use a summation variable with increased
    precision, essentially making additions exact. Thus the sum of errors
    adds up to less than 0.5, giving the correct value of $p(n)$ when
    rounding to the nearest integer.

    The remainder estimate at step $k$ provides an upper bound for the size
    of the $k$-th term. We add $\log_2 N$ bits to get low bits in the terms
    below $0.25 / N$ in magnitude.

    Using \code{arith_hrr_expsum_factored}, each $B_k(n)$ evaluation
    is broken down to a product of cosines of exact rational multiples
    of $\pi$. We transform all angles to $(0, \pi/4)$ for optimal accuracy.

    Since the evaluation of each term involves only $O(\log k)$ multiplications
    and evaluations of trigonometric functions of small angles, the
    relative rounding error is at most a few bits. We therefore just add
    an additional $\log_2 (C/k)$ bits for the $U(x)$ when $x$ is large.
    The cancellation of terms in $U(x)$ is of no concern, since Rademacher's
    bound allows us to terminate before $x$ becomes small.

    This analysis should be performed in more detail to give a rigorous
    error bound, but the precision currently implemented is almost
    certainly sufficient, not least considering that Rademacher's
    remainder bound significantly overshoots the actual values.

    To improve performance, we switch to doubles when the working precision
    becomes small enough. We also use a separate accumulator variable
    which gets added to the main sum periodically, in order to avoid
    costly updates of the full-precision result when $n$ is large.

void arith_number_of_partitions(fmpz_t x, ulong n)

    Sets $x$ to $p(n)$, the number of ways that $n$ can be written
    as a sum of positive integers without regard to order.

    This function uses a lookup table for $n < 128$ (where $p(n) < 2^{32}$),
    and otherwise calls \code{arith_number_of_partitions_mpfr}.

*******************************************************************************

    Sums of squares

*******************************************************************************

void arith_sum_of_squares(fmpz_t r, ulong k, const fmpz_t n)

    Sets $r$ to the number of ways $r_k(n)$ in which $n$ can be represented
    as a sum of $k$ squares.

    If $k = 2$ or $k = 4$, we write $r_k(n)$ as a divisor sum.

    Otherwise, we either recurse on $k$ or compute the theta function
    expansion up to $O(x^{n+1})$ and read off the last coefficient.
    This is generally optimal.

void arith_sum_of_squares_vec(fmpz * r, ulong k, slong n)

    For $i = 0, 1, \ldots, n-1$, sets $r_i$ to the number of
    representations of $i$ a sum of $k$ squares, $r_k(i)$.
    This effectively computes the $q$-expansion of $\vartheta_3(q)$
    raised to the $k$th power, i.e.

    $$\vartheta_3^k(q) = \left( \sum_{i=-\infty}^{\infty} q^{i^2} \right)^k.$$


*******************************************************************************

    MPFR extras

*******************************************************************************

void mpfr_pi_chudnovsky(mpfr_t x, mpfr_rnd_t rnd)

    Sets \code{x} to $\pi$, rounded in the direction \code{rnd}.

    Uses the Chudnovsky algorithm, which typically is about four times
    faster than the MPFR default function. As currently implemented, the
    value is not cached for repeated use.