1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
|
/*=============================================================================
This file is part of FLINT.
FLINT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
FLINT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FLINT; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2010, 2011 Fredrik Johansson
******************************************************************************/
*******************************************************************************
Primorials
*******************************************************************************
void arith_primorial(fmpz_t res, slong n)
Sets \code{res} to ``$n$ primorial'' or $n \#$, the product of all prime
numbers less than or equal to $n$.
*******************************************************************************
Harmonic numbers
*******************************************************************************
void _arith_harmonic_number(fmpz_t num, fmpz_t den, slong n)
Sets \code{(num, den)} to the reduced numerator and denominator of
the $n$-th harmonic number $H_n = 1 + 1/2 + 1/3 + \dotsb + 1/n$. The
result is zero if $n \leq 0$.
Table lookup is used for $H_n$ whose numerator and denominator
fit in single limb. For larger $n$, the function
\code{flint_mpn_harmonic_odd_balanced()} is used.
void arith_harmonic_number(fmpq_t x, slong n)
Sets \code{x} to the $n$-th harmonic number. This function is
equivalent to \code{_arith_harmonic_number} apart from the output
being a single \code{fmpq_t} variable.
*******************************************************************************
Stirling numbers
*******************************************************************************
void arith_stirling_number_1u(fmpz_t s, slong n, slong k)
void arith_stirling_number_1(fmpz_t s, slong n, slong k)
void arith_stirling_number_2(fmpz_t s, slong n, slong k)
Sets $s$ to $S(n,k)$ where $S(n,k)$ denotes an unsigned Stirling
number of the first kind $|S_1(n, k)|$, a signed Stirling number
of the first kind $S_1(n, k)$, or a Stirling number of the second
kind $S_2(n, k)$. The Stirling numbers are defined using the
generating functions
\begin{align*}
x_{(n)} & = \sum_{k=0}^n S_1(n,k) x^k \\
x^{(n)} & = \sum_{k=0}^n |S_1(n,k)| x^k \\
x^n & = \sum_{k=0}^n S_2(n,k) x_{(k)}
\end{align*}
where $x_{(n)} = x(x-1)(x-2) \dotsm (x-n+1)$ is a falling factorial
and $x^{(n)} = x(x+1)(x+2) \dotsm (x+n-1)$ is a rising factorial.
$S(n,k)$ is taken to be zero if $n < 0$ or $k < 0$.
These three functions are useful for computing isolated Stirling
numbers efficiently. To compute a range of numbers, the vector or
matrix versions should generally be used.
void arith_stirling_number_1u_vec(fmpz * row, slong n, slong klen)
void arith_stirling_number_1_vec(fmpz * row, slong n, slong klen)
void arith_stirling_number_2_vec(fmpz * row, slong n, slong klen)
Computes the row of Stirling numbers
\code{S(n,0), S(n,1), S(n,2), ..., S(n,klen-1)}.
To compute a full row, this function can be called with
\code{klen = n+1}. It is assumed that \code{klen} is at most $n + 1$.
void arith_stirling_number_1u_vec_next(fmpz * row, fmpz * prev, slong n,
slong klen)
void arith_stirling_number_1_vec_next(fmpz * row, fmpz * prev, slong n,
slong klen)
void arith_stirling_number_2_vec_next(fmpz * row, fmpz * prev, slong n,
slong klen)
Given the vector \code{prev} containing a row of Stirling numbers
\code{S(n-1,0), S(n-1,1), S(n-1,2), ..., S(n-1,klen-1)}, computes
and stores in the row argument
\code{S(n,0), S(n,1), S(n,2), ..., S(n,klen-1)}.
If \code{klen} is greater than \code{n}, the output ends with
\code{S(n,n) = 1} followed by \code{S(n,n+1) = S(n,n+2) = ... = 0}.
In this case, the input only needs to have length \code{n-1};
only the input entries up to \code{S(n-1,n-2)} are read.
The \code{row} and \code{prev} arguments are permitted to be the
same, meaning that the row will be updated in-place.
void arith_stirling_matrix_1u(fmpz_mat_t mat)
void arith_stirling_matrix_1(fmpz_mat_t mat)
void arith_stirling_matrix_2(fmpz_mat_t mat)
For an arbitrary $m$-by-$n$ matrix, writes the truncation of the
infinite Stirling number matrix
\begin{lstlisting}
row 0 : S(0,0)
row 1 : S(1,0), S(1,1)
row 2 : S(2,0), S(2,1), S(2,2)
row 3 : S(3,0), S(3,1), S(3,2), S(3,3)
\end{lstlisting}
up to row $m-1$ and column $n-1$ inclusive. The upper triangular
part of the matrix is zeroed.
For any $n$, the $S_1$ and $S_2$ matrices thus obtained are
inverses of each other.
*******************************************************************************
Bell numbers
*******************************************************************************
void arith_bell_number(fmpz_t b, ulong n)
Sets $b$ to the Bell number $B_n$, defined as the
number of partitions of a set with $n$ members. Equivalently,
$B_n = \sum_{k=0}^n S_2(n,k)$ where $S_2(n,k)$ denotes a Stirling number
of the second kind.
This function automatically selects between table lookup, binary
splitting, and the multimodular algorithm.
void arith_bell_number_bsplit(fmpz_t res, ulong n)
Computes the Bell number $B_n$ by evaluating a precise truncation of
the series $B_n = e^{-1} \sum_{k=0}^{\infty} \frac{k^n}{k!}$ using
binary splitting.
void arith_bell_number_multi_mod(fmpz_t res, ulong n)
Computes the Bell number $B_n$ using a multimodular algorithm.
This function evaluates the Bell number modulo several limb-size
primes using\\ \code{arith_bell_number_nmod} and reconstructs the integer
value using the fast Chinese remainder algorithm.
A bound for the number of needed primes is computed using
\code{arith_bell_number_size}.
void arith_bell_number_vec(fmpz * b, slong n)
Sets $b$ to the vector of Bell numbers $B_0, B_1, \ldots, B_{n-1}$
inclusive. Automatically switches between the \code{recursive}
and \code{multi_mod} algorithms depending on the size of $n$.
void arith_bell_number_vec_recursive(fmpz * b, slong n)
Sets $b$ to the vector of Bell numbers $B_0, B_1, \ldots, B_{n-1}$
inclusive. This function uses table lookup if $B_{n-1}$ fits in a
single word, and a standard triangular recurrence otherwise.
void arith_bell_number_vec_multi_mod(fmpz * b, slong n)
Sets $b$ to the vector of Bell numbers $B_0, B_1, \ldots, B_{n-1}$
inclusive.
This function evaluates the Bell numbers modulo several limb-size
primes using\\ \code{arith_bell_number_nmod_vec} and reconstructs the
integer values using the fast Chinese remainder algorithm.
A bound for the number of needed primes is computed using
\code{arith_bell_number_size}.
mp_limb_t bell_number_nmod(ulong n, nmod_t mod)
Computes the Bell number $B_n$ modulo a prime $p$ given by \code{mod}
After handling special cases, we use the formula
$$B_n = \sum_{k=0}^n \frac{(n-k)^n}{(n-k)!}
\sum_{j=0}^k \frac{(-1)^j}{j!}.$$
We arrange the operations in such a way that we only have to
multiply (and not divide) in the main loop. As a further optimisation,
we use sieving to reduce the number of powers that need to be
evaluated. This results in $O(n)$ memory usage.
The divisions by factorials require $n > p$, so we fall back to
calling\\ \code{bell_number_nmod_vec_recursive} and reading off the
last entry when $p \le n$.
void arith_bell_number_nmod_vec(mp_ptr b, slong n, nmod_t mod)
Sets $b$ to the vector of Bell numbers $B_0, B_1, \ldots, B_{n-1}$
inclusive modulo a prime $p$ given by \code{mod}. Automatically
switches between the \code{recursive} and \code{series} algorithms
depending on the size of $n$ and whether $p$ is large enough for the
series algorithm to work.
void arith_bell_number_nmod_vec_recursive(mp_ptr b, slong n, nmod_t mod)
Sets $b$ to the vector of Bell numbers $B_0, B_1, \ldots, B_{n-1}$
inclusive modulo a prime $p$ given by \code{mod}. This function uses
table lookup if $B_{n-1}$ fits in a single word, and a standard
triangular recurrence otherwise.
void arith_bell_number_nmod_vec_series(mp_ptr b, slong n, nmod_t mod)
Sets $b$ to the vector of Bell numbers $B_0, B_1, \ldots, B_{n-1}$
inclusive modulo a prime $p$ given by \code{mod}. This function
expands the exponential generating function
$$\sum_{k=0}^{\infty} \frac{B_n}{n!} x^n = \exp(e^x-1).$$
We require that $p \ge n$.
double arith_bell_number_size(ulong n)
Returns $b$ such that $B_n < 2^{\lfloor b \rfloor}$, using the inequality
$$B_n < \left(\frac{0.792n}{\log(n+1)}\right)^n$$
which is given in \cite{BerTas2010}.
*******************************************************************************
Bernoulli numbers and polynomials
*******************************************************************************
void _arith_bernoulli_number(fmpz_t num, fmpz_t den, ulong n)
Sets \code{(num, den)} to the reduced numerator and denominator
of the $n$-th Bernoulli number. As presently implemented,
this function simply calls\\ \code{_arith_bernoulli_number_zeta}.
void arith_bernoulli_number(fmpq_t x, ulong n)
Sets \code{x} to the $n$-th Bernoulli number. This function is
equivalent to\\ \code{_arith_bernoulli_number} apart from the output
being a single \code{fmpq_t} variable.
void _arith_bernoulli_number_vec(fmpz * num, fmpz * den, slong n)
Sets the elements of \code{num} and \code{den} to the reduced
numerators and denominators of the Bernoulli numbers
$B_0, B_1, B_2, \ldots, B_{n-1}$ inclusive. This function automatically
chooses between the \code{recursive}, \code{zeta} and \code{multi_mod}
algorithms according to the size of $n$.
void arith_bernoulli_number_vec(fmpq * x, slong n)
Sets the \code{x} to the vector of Bernoulli numbers
$B_0, B_1, B_2, \ldots, B_{n-1}$ inclusive. This function is
equivalent to \code{_arith_bernoulli_number_vec} apart
from the output being a single \code{fmpq} vector.
void arith_bernoulli_number_denom(fmpz_t den, ulong n)
Sets \code{den} to the reduced denominator of the $n$-th
Bernoulli number $B_n$. For even $n$, the denominator is computed
as the product of all primes $p$ for which $p - 1$ divides $n$;
this property is a consequence of the von Staudt-Clausen theorem.
For odd $n$, the denominator is trivial (\code{den} is set to 1 whenever
$B_n = 0$). The initial sequence of values smaller than $2^{32}$ are
looked up directly from a table.
double arith_bernoulli_number_size(ulong n)
Returns $b$ such that $|B_n| < 2^{\lfloor b \rfloor}$, using the inequality
$$|B_n| < \frac{4 n!}{(2\pi)^n}$$ and $n! \le (n+1)^{n+1} e^{-n}$.
No special treatment is given to odd $n$. Accuracy is not guaranteed
if $n > 10^{14}$.
void arith_bernoulli_polynomial(fmpq_poly_t poly, ulong n)
Sets \code{poly} to the Bernoulli polynomial of degree $n$,
$B_n(x) = \sum_{k=0}^n \binom{n}{k} B_k x^{n-k}$ where $B_k$
is a Bernoulli number. This function basically calls
\code{arith_bernoulli_number_vec} and then rescales the coefficients
efficiently.
void _arith_bernoulli_number_zeta(fmpz_t num, fmpz_t den, ulong n)
Sets \code{(num, den)} to the reduced numerator and denominator
of the $n$-th Bernoulli number.
This function first computes the exact denominator and a bound
for the size of the numerator. It then computes an approximation
of $|B_n| = 2n! \zeta(n) / (2 \pi)^n$ as a floating-point number
and multiplies by the denominator to to obtain a real number
that rounds to the exact numerator. For tiny $n$, the numerator
is looked up from a table to avoid unnecessary overhead.
void _arith_bernoulli_number_vec_recursive(fmpz * num, fmpz * den, slong n)
Sets the elements of \code{num} and \code{den} to the reduced
numerators and denominators of $B_0, B_1, B_2, \ldots, B_{n-1}$
inclusive.
The first few entries are computed using \code{arith_bernoulli_number},
and then Ramanujan's recursive formula expressing $B_m$ as a sum over
$B_k$ for $k$ congruent to $m$ modulo 6 is applied repeatedly.
To avoid costly GCDs, the numerators are transformed internally
to a common denominator and all operations are performed using
integer arithmetic. This makes the algorithm fast for small $n$,
say $n < 1000$. The common denominator is calculated directly
as the primorial of $n + 1$.
%[1] http://en.wikipedia.org/w/index.php?
% title=Bernoulli_number&oldid=405938876
void _arith_bernoulli_number_vec_zeta(fmpz * num, fmpz * den, slong n)
Sets the elements of \code{num} and \code{den} to the reduced
numerators and denominators of $B_0, B_1, B_2, \ldots, B_{n-1}$
inclusive. Uses repeated direct calls to\\
\code{_arith_bernoulli_number_zeta}.
void _arith_bernoulli_number_vec_multi_mod(fmpz * num, fmpz * den, slong n)
Sets the elements of \code{num} and \code{den} to the reduced
numerators and denominators of $B_0, B_1, B_2, \ldots, B_{n-1}$
inclusive. Uses the generating function
$$\frac{x^2}{\cosh(x)-1} = \sum_{k=0}^{\infty}
\frac{(2-4k) B_{2k}}{(2k)!} x^{2k}$$
which is evaluated modulo several limb-size primes using \code{nmod_poly}
arithmetic to yield the numerators of the Bernoulli numbers after
multiplication by the denominators and CRT reconstruction. This formula,
given (incorrectly) in \citep{BuhlerCrandallSompolski1992}, saves about
half of the time compared to the usual generating function $x/(e^x-1)$
since the odd terms vanish.
*******************************************************************************
Euler numbers and polynomials
Euler numbers are the integers $E_n$ defined by
$$\frac{1}{\cosh(t)} = \sum_{n=0}^{\infty} \frac{E_n}{n!} t^n.$$
With this convention, the odd-indexed numbers are zero and the even
ones alternate signs, viz.
$E_0, E_1, E_2, \ldots = 1, 0, -1, 0, 5, 0, -61, 0, 1385, 0, \ldots$.
The corresponding Euler polynomials are defined by
$$\frac{2e^{xt}}{e^t+1} = \sum_{n=0}^{\infty} \frac{E_n(x)}{n!} t^n.$$
*******************************************************************************
void arith_euler_number(fmpz_t res, ulong n)
Sets \code{res} to the Euler number $E_n$. Currently calls
\code{_arith_euler_number_zeta}.
void arith_euler_number_vec(fmpz * res, slong n)
Computes the Euler numbers $E_0, E_1, \dotsc, E_{n-1}$ for $n \geq 0$
and stores the result in \code{res}, which must be an initialised
\code{fmpz} vector of sufficient size.
This function evaluates the even-index $E_k$ modulo several limb-size
primes using the generating function and \code{nmod_poly} arithmetic.
A tight bound for the number of needed primes is computed using
\code{arith_euler_number_size}, and the final integer values are recovered
using balanced CRT reconstruction.
double arith_euler_number_size(ulong n)
Returns $b$ such that $|E_n| < 2^{\lfloor b \rfloor}$, using the inequality
$$|E_n| < \frac{2^{n+2} n!}{\pi^{n+1}}$$ and $n! \le (n+1)^{n+1} e^{-n}$.
No special treatment is given to odd $n$.
Accuracy is not guaranteed if $n > 10^{14}$.
void euler_polynomial(fmpq_poly_t poly, ulong n)
Sets \code{poly} to the Euler polynomial $E_n(x)$. Uses the formula
$$E_n(x) = \frac{2}{n+1}\left(B_{n+1}(x) -
2^{n+1}B_{n+1}\left(\frac{x}{2}\right)\right),$$
with the Bernoulli polynomial $B_{n+1}(x)$ evaluated once
using \code{bernoulli_polynomial} and then rescaled.
void _arith_euler_number_zeta(fmpz_t res, ulong n)
Sets \code{res} to the Euler number $E_n$. For even $n$, this function
uses the relation $$|E_n| = \frac{2^{n+2} n!}{\pi^{n+1}} L(n+1)$$
where $L(n+1)$ denotes the Dirichlet $L$-function with character
$\chi = \{ 0, 1, 0, -1 \}$.
*******************************************************************************
Legendre polynomials
*******************************************************************************
void arith_legendre_polynomial(fmpq_poly_t poly, ulong n)
Sets \code{poly} to the $n$-th Legendre polynomial
$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} \left[
\left(x^2-1\right)^n \right].$$
The coefficients are calculated using a hypergeometric recurrence.
To improve performance, the common denominator is computed in one step
and the coefficients are evaluated using integer arithmetic. The
denominator is given by
$\gcd(n!,2^n) = 2^{\lfloor n/2 \rfloor + \lfloor n/4 \rfloor + \ldots}.$
void arith_chebyshev_t_polynomial(fmpz_poly_t poly, ulong n)
Sets \code{poly} to the Chebyshev polynomial of the first kind $T_n(x)$,
defined formally by $T_n(x) = \cos(n \cos^{-1}(x))$. The coefficients are
calculated using a hypergeometric recurrence.
void arith_chebyshev_u_polynomial(fmpz_poly_t poly, ulong n)
Sets \code{poly} to the Chebyshev polynomial of the first kind $U_n(x)$,
which satisfies $(n+1) U_n(x) = T'_{n+1}(x)$.
The coefficients are calculated using a hypergeometric recurrence.
*******************************************************************************
Multiplicative functions
*******************************************************************************
void arith_euler_phi(fmpz_t res, const fmpz_t n)
Sets \code{res} to the Euler totient function $\phi(n)$, counting the
number of positive integers less than or equal to $n$ that are coprime
to $n$.
int arith_moebius_mu(const fmpz_t n)
Computes the Moebius function $\mu(n)$, which is defined as $\mu(n) = 0$
if $n$ has a prime factor of multiplicity greater than $1$, $\mu(n) = -1$
if $n$ has an odd number of distinct prime factors, and $\mu(n) = 1$ if
$n$ has an even number of distinct prime factors. By convention,
$\mu(0) = 0$.
void arith_divisor_sigma(fmpz_t res, const fmpz_t n, ulong k)
Sets \code{res} to $\sigma_k(n)$, the sum of $k$th powers of all
divisors of $n$.
void arith_divisors(fmpz_poly_t res, const fmpz_t n)
Set the coefficients of the polynomial \code{res} to the divisors of $n$,
including $1$ and $n$ itself, in ascending order.
void arith_ramanujan_tau(fmpz_t res, const fmpz_t n)
Sets \code{res} to the Ramanujan tau function $\tau(n)$ which is the
coefficient of $q^n$ in the series expansion of
$f(q) = q \prod_{k \geq 1} \bigl(1 - q^k\bigr)^{24}$.
We factor $n$ and use the identity $\tau(pq) = \tau(p) \tau(q)$
along with the recursion
$\tau(p^{r+1}) = \tau(p) \tau(p^r) - p^{11} \tau(p^{r-1})$
for prime powers.
The base values $\tau(p)$ are obtained using the function
\code{arith_ramanujan_tau_series()}. Thus the speed of
\code{arith_ramanujan_tau()} depends on the largest prime factor of $n$.
Future improvement: optimise this function for small $n$, which
could be accomplished using a lookup table or by calling
\code{arith_ramanujan_tau_series()} directly.
void arith_ramanujan_tau_series(fmpz_poly_t res, slong n)
Sets \code{res} to the polynomial with coefficients
$\tau(0),\tau(1), \dotsc, \tau(n-1)$, giving the initial $n$ terms
in the series expansion of
$f(q) = q \prod_{k \geq 1} \bigl(1-q^k\bigr)^{24}$.
We use the theta function identity
\begin{equation*}
f(q) = q \Biggl( \sum_{k \geq 0} (-1)^k (2k+1) q^{k(k+1)/2} \Biggr)^8
\end{equation*}
which is evaluated using three squarings. The first squaring is done
directly since the polynomial is very sparse at this point.
*******************************************************************************
Cyclotomic polynomials
*******************************************************************************
void _arith_cyclotomic_polynomial(fmpz * a, ulong n, mp_ptr factors,
slong num_factors, ulong phi)
Sets \code{a} to the lower half of the cyclotomic polynomial $\Phi_n(x)$,
given $n \ge 3$ which must be squarefree.
A precomputed array containing the prime factors of $n$ must be provided,
as well as the value of the Euler totient function $\phi(n)$ as \code{phi}.
If $n$ is even, 2 must be the first factor in the list.
The degree of $\Phi_n(x)$ is exactly $\phi(n)$. Only the low
$(\phi(n) + 1) / 2$ coefficients are written; the high coefficients
can be obtained afterwards by copying the low coefficients
in reverse order, since $\Phi_n(x)$ is a palindrome for $n \ne 1$.
We use the sparse power series algorithm described as Algorithm 4
\cite{ArnoldMonagan2011}. The algorithm is based on the identity
$$\Phi_n(x) = \prod_{d|n} (x^d - 1)^{\mu(n/d)}.$$
Treating the polynomial as a power series, the multiplications and
divisions can be done very cheaply using repeated additions and
subtractions. The complexity is $O(2^k \phi(n))$ where $k$ is the
number of prime factors in $n$.
To improve efficiency for small $n$, we treat the \code{fmpz}
coefficients as machine integers when there is no risk of overflow.
The following bounds are given in Table 6 of \cite{ArnoldMonagan2011}:
For $n < 10163195$, the largest coefficient in any $\Phi_n(x)$
has 27 bits, so machine arithmetic is safe on 32 bits.
For $n < 169828113$, the largest coefficient in any $\Phi_n(x)$
has 60 bits, so machine arithmetic is safe on 64 bits.
Further, the coefficients are always $\pm 1$ or 0 if there are
exactly two prime factors, so in this case machine arithmetic can be
used as well.
Finally, we handle two special cases: if there is exactly one prime
factor $n = p$, then $\Phi_n(x) = 1 + x + x^2 + \ldots + x^{n-1}$,
and if $n = 2m$, we use $\Phi_n(x) = \Phi_m(-x)$ to fall back
to the case when $n$ is odd.
void arith_cyclotomic_polynomial(fmpz_poly_t poly, ulong n)
Sets \code{poly} to the $n$th cyclotomic polynomial, defined as
$$\Phi_n(x) = \prod_{\omega} (x-\omega)$$
where $\omega$ runs over all the $n$th primitive roots of unity.
We factor $n$ into $n = qs$ where $q$ is squarefree,
and compute $\Phi_q(x)$. Then $\Phi_n(x) = \Phi_q(x^s)$.
void _arith_cos_minpoly(fmpz * coeffs, slong d, ulong n)
For $n \ge 1$, sets \code{(coeffs, d+1)} to the minimal polynomial
$\Psi_n(x)$ of $\cos(2 \pi / n)$, scaled to have integer coefficients
by multiplying by $2^d$ ($2^{d-1}$ when $n$ is a power of two).
The polynomial $\Psi_n(x)$ is described in \cite{WaktinsZeitlin1993}.
As proved in that paper, the roots of $\Psi_n(x)$ for $n \ge 3$ are
$\cos(2 \pi k / n)$ where $0 \le k < d$ and where $\gcd(k, n) = 1$.
To calculate $\Psi_n(x)$, we compute the roots numerically with MPFR
and use a balanced product tree to form a polynomial with fixed-point
coefficients, i.e. an approximation of $2^p 2^d \Psi_n(x)$.
To determine the precision $p$, we note that the coefficients
in $\prod_{i=1}^d (x - \alpha)$ can be bounded by the central
coefficient in the binomial expansion of $(x+1)^d$.
When $n$ is an odd prime, we use a direct formula for the coefficients
(\url{http://mathworld.wolfram.com/TrigonometryAngles.html}).
void arith_cos_minpoly(fmpz_poly_t poly, ulong n)
Sets \code{poly} to the minimal polynomial $\Psi_n(x)$ of
$\cos(2 \pi / n)$, scaled to have integer coefficients. This
polynomial has degree 1 if $n = 1$ or $n = 2$, and
degree $\phi(n) / 2$ otherwise.
We allow $n = 0$ and define $\Psi_0 = 1$.
*******************************************************************************
Swinnerton-Dyer polynomials
*******************************************************************************
void arith_swinnerton_dyer_polynomial(fmpz_poly_t poly, ulong n)
Sets \code{poly} to the Swinnerton-Dyer polynomial $S_n$, defined as
the integer polynomial
$$S_n = \prod (x \pm \sqrt{2} \pm \sqrt{3}
\pm \sqrt{5} \pm \ldots \pm \sqrt{p_n})$$
where $p_n$ denotes the $n$-th prime number and all combinations
of signs are taken. This polynomial has degree $2^n$ and is
irreducible over the integers.
*******************************************************************************
Landau's function
*******************************************************************************
void arith_landau_function_vec(fmpz * res, slong len)
Computes the first \code{len} values of Landau's function $g(n)$
starting with $g(0)$. Landau's function gives the largest order
of an element of the symmetric group $S_n$.
Implements the ``basic algorithm'' given in
\cite{DelegliseNicolasZimmermann2009}. The running time is
$O(n^{3/2} / \sqrt{\log n})$.
*******************************************************************************
Dedekind sums
Most of the definitions and relations used in the following section
are given by Apostol \cite{Apostol1997}. The Dedekind sum $s(h,k)$ is
defined for all integers $h$ and $k$ as
$$s(h,k) = \sum_{i=1}^{k-1} \left(\left(\frac{i}{k}\right)\right)
\left(\left(\frac{hi}{k}\right)\right)$$
where
$$((x))=\begin{cases}
x-\lfloor x\rfloor-1/2 &\mbox{if }
x\in\mathbb{Q}\setminus\mathbb{Z}\\
0 &\mbox{if }x\in\mathbb{Z}.
\end{cases}$$
If $0 < h < k$ and $(h,k) = 1$, this reduces to
$$s(h,k) = \sum_{i=1}^{k-1} \frac{i}{k}
\left(\frac{hi}{k}-\left\lfloor\frac{hi}{k}\right\rfloor
-\frac{1}{2}\right).$$
The main formula for evaluating the series above is the following.
Letting $r_0 = k$, $r_1 = h$, $r_2, r_3, \ldots, r_n, r_{n+1} = 1$
be the remainder sequence in the Euclidean algorithm for
computing GCD of $h$ and $k$,
$$s(h,k) = \frac{1-(-1)^n}{8} - \frac{1}{12} \sum_{i=1}^{n+1}
(-1)^i \left(\frac{1+r_i^2+r_{i-1}^2}{r_i r_{i-1}}\right).$$
Writing $s(h,k) = p/q$, some useful properties employed are
$|s| < k / 12$, $q | 6k$ and $2|p| < k^2$.
*******************************************************************************
void arith_dedekind_sum_naive(fmpq_t s, const fmpz_t h, const fmpz_t k)
Computes $s(h,k)$ for arbitrary $h$ and $k$ using a straightforward
implementation of the defining sum using \code{fmpz} arithmetic.
This function is slow except for very small $k$ and is mainly
intended to be used for testing purposes.
double arith_dedekind_sum_coprime_d(double h, double k)
Returns an approximation of $s(h,k)$ computed by evaluating the
remainder sequence sum using double-precision arithmetic.
Assumes that $0 < h < k$ and $(h,k) = 1$, and that $h$, $k$ and
their remainders can be represented exactly as doubles, e.g.
$k < 2^{53}$.
We give a rough error analysis with IEEE double precision arithmetic,
assuming $2 k^2 < 2^{53}$. By assumption, the terms in the sum evaluate
exactly apart from the division. Thus each term is bounded in magnitude
by $2k$ and its absolute error is bounded by $k 2^{-52}$.
By worst-case analysis of the Euclidean algorithm, we also know that
no more than 40 terms will be added.
It follows that the absolute error is at most $C k 2^{-53}$ for
some constant $C$. If we multiply the output by $6 k$ in order
to obtain an integer numerator, the order of magnitude of the error
is around $6 C k^2 2^{-53}$, so rounding to the nearest integer gives
a correct numerator whenever $k < 2^{26-d}$ for some small number of
guard bits $d$. A computation has shown that $d = 5$ is sufficient,
i.e. this function can be used for exact computation when
$k < 2^{21} \approx 2 \times 10^6$. This bound can likely be improved.
void arith_dedekind_sum_coprime_large(fmpq_t s, const fmpz_t h, const fmpz_t k)
Computes $s(h,k)$ for $h$ and $k$ satisfying $0 \le h \le k$ and
$(h,k) = 1$. This function effectively evaluates the remainder
sequence sum using \code{fmpz} arithmetic, without optimising for
any special cases. To avoid rational arithmetic, we use
the integer algorithm of Knuth \cite{Knuth1977}.
void arith_dedekind_sum_coprime(fmpq_t s, const fmpz_t h, const fmpz_t k)
Computes $s(h,k)$ for $h$ and $k$ satisfying $0 \le h \le k$
and $(h,k) = 1$.
This function calls \code{arith_dedekind_sum_coprime_d} if $k$ is small
enough for a double-precision estimate of the sum to yield a correct
numerator upon multiplication by $6k$ and rounding to the nearest integer.
Otherwise, it calls \code{arith_dedekind_sum_coprime_large}.
void arith_dedekind_sum(fmpq_t s, const fmpz_t h, const fmpz_t k)
Computes $s(h,k)$ for arbitrary $h$ and $k$. If the caller
can guarantee $0 < h < k$ and $(h,k) = 1$ ahead of time, it is always
cheaper to call \code{arith_dedekind_sum_coprime}.
This function uses the following identities to reduce the general
case to the situation where $0 < h < k$ and $(h,k) = 1$:
If $k \le 2$ or $h = 0$, $s(h,k) = 0$.
If $h < 0$, $s(h,k) = -s(-h,k)$.
For any $q > 0$, $s(qh,qk) = s(h,k)$.
If $0 < k < h$ and $(h,k) = 1$,
$s(h,k) = (1+h(h-3k)+k^2) / (12hk) - t(k,h).$
*******************************************************************************
Number of partitions
*******************************************************************************
void arith_number_of_partitions_vec(fmpz * res, slong len)
Computes first \code{len} values of the partition function $p(n)$
starting with $p(0)$. Uses inversion of Euler's pentagonal series.
void arith_number_of_partitions_nmod_vec(mp_ptr res, slong len, nmod_t mod)
Computes first \code{len} values of the partition function $p(n)$
starting with $p(0)$, modulo the modulus defined by \code{mod}.
Uses inversion of Euler's pentagonal series.
void arith_hrr_expsum_factored(trig_prod_t prod, mp_limb_t k, mp_limb_t n)
Symbolically evaluates the exponential sum
$$A_k(n) = \sum_{h=0}^{k-1}
\exp\left(\pi i \left[ s(h,k) - \frac{2hn}{k}\right]\right)$$
appearing in the Hardy-Ramanujan-Rademacher formula, where $s(h,k)$ is a
Dedekind sum.
Rather than evaluating the sum naively, we factor $A_k(n)$ into a
product of cosines based on the prime factorisation of $k$. This
process is based on the identities given in \cite{Whiteman1956}.
The special \code{trig_prod_t} structure \code{prod} represents a
product of cosines of rational arguments, multiplied by an algebraic
prefactor. It must be pre-initialised with \code{trig_prod_init}.
This function assumes that $24k$ and $24n$ do not overflow a single limb.
If $n$ is larger, it can be pre-reduced modulo $k$, since $A_k(n)$
only depends on the value of $n \bmod k$.
void arith_number_of_partitions_mpfr(mpfr_t x, ulong n)
Sets the pre-initialised MPFR variable $x$ to the exact value of $p(n)$.
The value is computed using the Hardy-Ramanujan-Rademacher formula.
The precision of $x$ will be changed to allow $p(n)$ to be represented
exactly. The interface of this function may be updated in the future
to allow computing an approximation of $p(n)$ to smaller precision.
The Hardy-Ramanujan-Rademacher formula is given with error bounds
in \cite{Rademacher1937}. We evaluate it in the form
$$p(n) = \sum_{k=1}^N B_k(n) U(C/k) + R(n,N)$$
where
$$U(x) = \cosh(x) + \frac{\sinh(x)}{x},
\quad C = \frac{\pi}{6} \sqrt{24n-1}$$
$$B_k(n) = \sqrt{\frac{3}{k}} \frac{4}{24n-1} A_k(n)$$
and where $A_k(n)$ is a certain exponential sum. The remainder satisfies
$$|R(n,N)| < \frac{44 \pi^2}{225 \sqrt{3}} N^{-1/2} +
\frac{\pi \sqrt{2}}{75} \left(\frac{N}{n-1}\right)^{1/2}
\sinh\left(\pi \sqrt{\frac{2}{3}} \frac{\sqrt{n}}{N} \right).$$
We choose $N$ such that $|R(n,N)| < 0.25$, and a working precision
at term $k$ such that the absolute error of the term is expected to be
less than $0.25 / N$. We also use a summation variable with increased
precision, essentially making additions exact. Thus the sum of errors
adds up to less than 0.5, giving the correct value of $p(n)$ when
rounding to the nearest integer.
The remainder estimate at step $k$ provides an upper bound for the size
of the $k$-th term. We add $\log_2 N$ bits to get low bits in the terms
below $0.25 / N$ in magnitude.
Using \code{arith_hrr_expsum_factored}, each $B_k(n)$ evaluation
is broken down to a product of cosines of exact rational multiples
of $\pi$. We transform all angles to $(0, \pi/4)$ for optimal accuracy.
Since the evaluation of each term involves only $O(\log k)$ multiplications
and evaluations of trigonometric functions of small angles, the
relative rounding error is at most a few bits. We therefore just add
an additional $\log_2 (C/k)$ bits for the $U(x)$ when $x$ is large.
The cancellation of terms in $U(x)$ is of no concern, since Rademacher's
bound allows us to terminate before $x$ becomes small.
This analysis should be performed in more detail to give a rigorous
error bound, but the precision currently implemented is almost
certainly sufficient, not least considering that Rademacher's
remainder bound significantly overshoots the actual values.
To improve performance, we switch to doubles when the working precision
becomes small enough. We also use a separate accumulator variable
which gets added to the main sum periodically, in order to avoid
costly updates of the full-precision result when $n$ is large.
void arith_number_of_partitions(fmpz_t x, ulong n)
Sets $x$ to $p(n)$, the number of ways that $n$ can be written
as a sum of positive integers without regard to order.
This function uses a lookup table for $n < 128$ (where $p(n) < 2^{32}$),
and otherwise calls \code{arith_number_of_partitions_mpfr}.
*******************************************************************************
Sums of squares
*******************************************************************************
void arith_sum_of_squares(fmpz_t r, ulong k, const fmpz_t n)
Sets $r$ to the number of ways $r_k(n)$ in which $n$ can be represented
as a sum of $k$ squares.
If $k = 2$ or $k = 4$, we write $r_k(n)$ as a divisor sum.
Otherwise, we either recurse on $k$ or compute the theta function
expansion up to $O(x^{n+1})$ and read off the last coefficient.
This is generally optimal.
void arith_sum_of_squares_vec(fmpz * r, ulong k, slong n)
For $i = 0, 1, \ldots, n-1$, sets $r_i$ to the number of
representations of $i$ a sum of $k$ squares, $r_k(i)$.
This effectively computes the $q$-expansion of $\vartheta_3(q)$
raised to the $k$th power, i.e.
$$\vartheta_3^k(q) = \left( \sum_{i=-\infty}^{\infty} q^{i^2} \right)^k.$$
*******************************************************************************
MPFR extras
*******************************************************************************
void mpfr_pi_chudnovsky(mpfr_t x, mpfr_rnd_t rnd)
Sets \code{x} to $\pi$, rounded in the direction \code{rnd}.
Uses the Chudnovsky algorithm, which typically is about four times
faster than the MPFR default function. As currently implemented, the
value is not cached for repeated use.
|