1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
/*=============================================================================
This file is part of FLINT.
FLINT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
FLINT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FLINT; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2011 Fredrik Johansson
******************************************************************************/
#include <math.h>
#include "arith.h"
/* Computes length-m vector containing |E_{2k}| */
static void
__euler_number_vec_mod_p(mp_ptr res, mp_ptr tmp, slong m, nmod_t mod)
{
mp_limb_t fac, c;
slong k;
/* Divide by factorials */
fac = n_factorial_mod2_preinv(2*(m-1), mod.n, mod.ninv);
c = n_invmod(fac, mod.n);
for (k = m - 1; k >= 0; k--)
{
tmp[k] = c;
c = n_mulmod2_preinv(c, (2*k)*(2*k-1), mod.n, mod.ninv);
}
_nmod_poly_inv_series(res, tmp, m, mod);
/* Multiply by factorials */
c = UWORD(1);
for (k = 0; k < m; k++)
{
res[k] = n_mulmod2_preinv(res[k], c, mod.n, mod.ninv);
c = n_mulmod2_preinv(c, (2*k+1)*(2*k+2), mod.n, mod.ninv);
c = n_negmod(c, mod.n);
}
}
#define CRT_MAX_RESOLUTION 16
void __euler_number_vec_multi_mod(fmpz * res, slong n)
{
fmpz_comb_t comb[CRT_MAX_RESOLUTION];
fmpz_comb_temp_t temp[CRT_MAX_RESOLUTION];
mp_limb_t * primes;
mp_limb_t * residues;
mp_ptr * polys;
mp_ptr temppoly;
nmod_t mod;
slong i, j, k, m, num_primes, num_primes_k, resolution;
mp_bitcnt_t size, prime_bits;
if (n < 1)
return;
/* Number of nonzero entries */
m = (n + 1) / 2;
resolution = FLINT_MAX(1, FLINT_MIN(CRT_MAX_RESOLUTION, m / 16));
size = arith_euler_number_size(n);
prime_bits = FLINT_BITS - 1;
num_primes = (size + prime_bits - 1) / prime_bits;
primes = flint_malloc(num_primes * sizeof(mp_limb_t));
residues = flint_malloc(num_primes * sizeof(mp_limb_t));
polys = flint_malloc(num_primes * sizeof(mp_ptr));
/* Compute Euler numbers mod p */
primes[0] = n_nextprime(UWORD(1)<<prime_bits, 0);
for (k = 1; k < num_primes; k++)
primes[k] = n_nextprime(primes[k-1], 0);
temppoly = _nmod_vec_init(m);
for (k = 0; k < num_primes; k++)
{
polys[k] = _nmod_vec_init(m);
nmod_init(&mod, primes[k]);
__euler_number_vec_mod_p(polys[k], temppoly, m, mod);
}
/* Init CRT comb */
for (i = 0; i < resolution; i++)
{
fmpz_comb_init(comb[i], primes, num_primes * (i + 1) / resolution);
fmpz_comb_temp_init(temp[i], comb[i]);
}
/* Trivial entries */
for (k = 1; k < n; k += 2)
fmpz_zero(res + k);
/* Reconstruction */
for (k = 0; k < n; k += 2)
{
size = arith_euler_number_size(k);
/* Use only as large a comb as needed */
num_primes_k = (size + prime_bits - 1) / prime_bits;
for (i = 0; i < resolution; i++)
{
if (comb[i]->num_primes >= num_primes_k)
break;
}
num_primes_k = comb[i]->num_primes;
for (j = 0; j < num_primes_k; j++)
residues[j] = polys[j][k / 2];
fmpz_multi_CRT_ui(res + k, residues, comb[i], temp[i], 0);
if (k % 4)
fmpz_neg(res + k, res + k);
}
/* Cleanup */
for (k = 0; k < num_primes; k++)
_nmod_vec_clear(polys[k]);
_nmod_vec_clear(temppoly);
for (i = 0; i < resolution; i++)
{
fmpz_comb_temp_clear(temp[i]);
fmpz_comb_clear(comb[i]);
}
flint_free(primes);
flint_free(residues);
flint_free(polys);
}
void arith_euler_number_vec(fmpz * res, slong n)
{
__euler_number_vec_multi_mod(res, n);
}
|