1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
|
/*=============================================================================
This file is part of FLINT.
FLINT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
FLINT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FLINT; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2013 Tom Bachmann
******************************************************************************/
/*
Demo FLINTXX header to illustrate flintxx extension.
*/
///////////////////////////////////////////////////////////////////////////////
// FAKE C DATA TYPE
// (This would normally reside in foo.h.)
///////////////////////////////////////////////////////////////////////////////
#ifndef FOO_H
#define FOO_H
#include <stdio.h>
extern "C" { // usually only #ifdef __cplusplus etc
typedef slong foo;
typedef slong foo_t[1];
static __inline__ void foo_init(foo_t f)
{
*f = 0l;
}
static __inline__ void foo_clear(foo_t f)
{
}
static __inline__ void foo_set(foo_t to, const foo_t from)
{
*to = *from;
}
static __inline__ void foo_set_si(foo_t f, slong e)
{
*f = e;
}
static __inline__ void foo_add(foo_t to, const foo_t e1, const foo_t e2)
{
*to = *e1 + *e2;
}
static __inline__ void foo_add_si(foo_t to, const foo_t e1, slong e2)
{
*to = *e1 + e2;
}
static __inline__ int foo_cmp(const foo_t e1, const foo_t e2)
{
if(*e1 == *e2)
return 0;
return *e1 > *e2 ? 1 : -1;
}
static __inline__ int foo_is_zero(const foo_t f)
{
return *f == 0;
}
static __inline__ void foo_magic(foo_t to, const foo_t from)
{
*to = 2 * (*from) + 1;
}
}
#endif
///////////////////////////////////////////////////////////////////////////////
// C++ wrapper
// (This would normally reside in fooxx.h.)
///////////////////////////////////////////////////////////////////////////////
#ifndef FOOXX_H
#define FOOXX_H
#include <iostream>
#include "flintxx/expression.h"
#include "flintxx/flint_classes.h"
namespace flint {
// fooxx_expression is an "all-purpose" expression template class. In
// principle, both Operation and Data can be arbitrary types (Data has to be
// copy constructible), but in this generality the objects will be not much
// use. In practice, Operation is an empty type, which is just used as a "tag",
// and Data is a rather primitive type holding essentially just some payload.
// Even more practically speaking, the only instantiations the FLINT developer
// should have have to make explicitly are when Operation is
// operations::immediate.
// The flintxx library will create other instantiations automatically, with
// more complicated Data arguments, and different Operation-s.
template<class Operation, class Data>
class fooxx_expression
// In order for the flintxx library to do its work, your class must derive from
// flint::expression. If your class has just two template parameters Operation
// and Data, then the following line is sufficient.
: public expression<derived_wrapper<fooxx_expression>, Operation, Data>
{
public:
// This line is formulaic, and just makes the base class available.
// The typedef is used by the FLINTXX_DEFINE_* macros below, and is
// necessary because of namespace injection bugs in gcc<4.5.
typedef expression<derived_wrapper< ::flint::fooxx_expression>,
Operation, Data> base_t;
// The next two lines are formulaic, and most likely required in any
// concrete class.
FLINTXX_DEFINE_BASICS(fooxx_expression)
FLINTXX_DEFINE_CTORS(fooxx_expression)
// This line enables reference types for your class. The second argument is
// the underlying C type (note this is foo, not foo_t). The third argument
// is the name under which to make the underlying C type available.
// All of fooxx, fooxx_ref and fooxx_srcref will have methods _foo() which
// can be used to manipulate the underlying C data type.
FLINTXX_DEFINE_C_REF(fooxx_expression, foo, _foo)
// Now custom methods can be added. The typical pattern is to call a C
// function with argument this->evaluate()._foo(). The evaluate() method is
// inherited from the expression class (this is why it needs to be
// qualified by "this"). It obtains a reference to self if self is an
// immediate object, and otherwise evaluates self into a temporary
// immediate object.
// If you leave out the evaluate() step, then the method will only work
// on immediates (which may be desirable).
bool is_zero() const {return foo_is_zero(this->evaluate()._foo());}
};
// This is formulaic. The class fooxx will be an instantiation of
// fooxx_expression, with Operation operations::immediate and Data
// detail::foo_data. We need to forward-declare this because of cyclic
// dependencies among the immediate types (e.g. fooxx_srcref can be
// constructed from fooxx, and vice versa).
namespace detail {
struct foo_data;
}
// This line just carries out the plan of definition of fooxx explained above.
typedef fooxx_expression<operations::immediate, detail::foo_data> fooxx;
// If you want reference types (i.e. if you had FLINTXX_DEFINE_C_REF above),
// these lines are again formulaic.
typedef fooxx_expression<operations::immediate,
flint_classes::ref_data<fooxx, foo> > fooxx_ref;
typedef fooxx_expression<operations::immediate,
flint_classes::srcref_data<fooxx, fooxx_ref, foo> > fooxx_srcref;
namespace detail {
// We now define the actual immediate Data type. This is not just foo_t (the
// underlying C data type), because want it to behave nicely "in a C++ world".
struct foo_data
{
// In general, your data type can contain members and member types in any
// way you want. However, to work with the automatic reference type system,
// the following three lines are necessary.
foo_t inner;
typedef foo_t& data_ref_t;
typedef const foo_t& data_srcref_t;
// Default constructor. If this is not provided, fooxx will not be default
// constructible (this is OK but requires some additional care, see e.g.
// padicxx).
foo_data() {foo_init(inner);}
// Destructor. You most likely want this.
~foo_data() {foo_clear(inner);}
// Copy constructor. You must provide this.
foo_data(const foo_data& o)
{
foo_init(inner);
foo_set(inner, o.inner);
}
// Instantiation from srcref. This is basically the same as the copy,
// constructor, but unfortunately has to be repeated. This also takes care
// of instantiation from ref, since ref->srcref is an implicit conversion
// path.
foo_data(fooxx_srcref r)
{
foo_init(inner);
foo_set(inner, r._foo());
}
// Now you can add more constructors, or in fact any methods you like.
// This one allows constructing fooxx directly from long, int,
// unsigned short etc.
template<class T>
foo_data(T t,
typename mp::enable_if<traits::fits_into_slong<T> >::type* = 0)
{
foo_init(inner);
foo_set_si(inner, t);
}
};
} // detail
// By now our data type is instantiable, but nothing can be done with it.
// The flintxx library would be able to create expression templates involving
// fooxx, but will not do so because it has no way of evaluating them. We
// need to provides evaluation (and other) *rules* to the library. These
// (have to) live in namespace flint::rules.
//
// All possible rules are defined in flintxx/rules.h.
namespace rules {
// These two lines are convenient, are not formulaic except that they are used
// in all code below.
#define FOOXX_COND_S FLINTXX_COND_S(fooxx)
#define FOOXX_COND_T FLINTXX_COND_T(fooxx)
// Define a conditional assignment rule. The general pattern is
//
// FLINT_DEFINE_DOIT_COND2(name, cond1, cond2, eval).
//
// This will define a "doit" rule for "name", which takes one input and
// one output argument. The result looks something like
//
// template<class T, class U>
// struct assignment<T, U, enable if cond1<T> and cond2<U> are satisfied>
// {
// static void doit(T& to, const U& from)
// eval;
// };
//
// In our case, we are defining an assignment rule, i.e. an explanation on
// how to execute operator=. If the right hand side is an expression template,
// flintxx will automatically evaluate it first. Thus we need only treat the
// case where the LHS is fmpzxx or fmpzxx_ref, and the RHS is fmpzxx, fmpzxx_ref
// or fmpzxx_srcref. This is precisely what the conditions FOOXX_COND_T
// and FOOXX_COND_S (conditions "fooxx target" and "fooxx source") mean.
FLINT_DEFINE_DOIT_COND2(assignment, FOOXX_COND_T, FOOXX_COND_S,
foo_set(to._foo(), from._foo()))
// This line defines assignment of integral PODs to fooxx. Since the underlying
// C library only defines fooxx_set_si, we can only safely allow this if the
// right hand side can always be losslessly converted into a signed long,
// so we use the condition traits::fits_into_slong. Traits are defined all
// throughout flintxx, but the most general purpose ones (like fits_into_slong,
// is_unsigned_integer etc) can be found in flintxx/traits.h
FLINT_DEFINE_DOIT_COND2(assignment, FOOXX_COND_T, traits::fits_into_slong,
foo_set_si(to._foo(), from, 1))
// We now define evaluation rules. In full generality, the rule evaluation<...>
// can be used to define how to evaluate any kind of expression. But this is
// difficult to use. Moreover, much evaluation logic is shared among most
// data types. For example, to evaluate an expression like a + b + c,
// one typically first has to evaluate (say) a + b into a temporary t, and then
// evaluate t + c. The only step that is specific to fooxx here is how to
// add two immediates.
// For this reason, flintxx has special convenience forms of the evaluation
// rule, called binary and unary expressions. Defining a binary expression
// f(x, y) tells flintxx how to evaluate operation "f" on types "x" and "y",
// typically immediates. Then flintxx will figure out how to evaluate the
// arguments into temporaries first etc.
// There is a common special case, when f(x, y) is always the same as f(y, x),
// even though x and y may be of different types. Letting flintxx know of this
// avoids defining the rule both ways round.
//
// Here we define a commutative binary expression rule, for operation "plus",
// to be executed on to objects of types T and U, both satisfying FOOXX_COND_S.
// The result is to be of type foooxx (the second argument).
// In this case the types are fully symmetric, so we could have used
// FLINT_DEFINE_BINARY_EXPR_COND2 without adverse effects.
//
// The eval statement should have the effect of to = e1 + e2.
FLINT_DEFINE_CBINARY_EXPR_COND2(plus, fooxx, FOOXX_COND_S, FOOXX_COND_S,
foo_add(to._foo(), e1._foo(), e2._foo()))
// Addation of fooxx and PODs. This time CBINARY instead of BINARY is vital.
FLINT_DEFINE_CBINARY_EXPR_COND2(plus, fooxx, FOOXX_COND_S,
traits::fits_into_slong,
foo_add_si(to._foo(), e1._foo(), e2))
// Next we define relational operators. A convenient way of doing so is using
// a "cmp" function, which is handily provided by the underlying C library.
// This has a somewhat peculiar signature, so cannot be defined using one of
// the standard macros. However, it comes up with many actual FLINT data types,
// so we have a special FLINTXX macro just for defining cmp.
FLINTXX_DEFINE_CMP(fooxx, foo_cmp(e1._foo(), e2._foo()))
// Now we define a rule how to print fooxx. There is no macro for this, because
// normally instead we define conversion to string, and flintxx takes care of
// printing. However, the C library for fooxx provides neither printing nor
// conversion to string, so we have to do our own implementation.
template<class T>
struct print<T, typename mp::enable_if<FOOXX_COND_S<T> >::type>
{
static void doit(const T& i, std::ostream& o)
{
o << *i._foo();
}
};
} // rules
// By now fooxx is a pretty passable wrapper type. In fact the only thing left
// to do is to expose foo_magic. This is a special function which can be
// executed on instances of foo, and yields another instance of foo. It is
// essentially just another unary expression, just with an unusual name, so
// this is how we treat it.
// This line introduces a new type of unary operation, called "magic_op",
// together with a function flint::magic(T), which creates expression templates
// with this new operation. In principle, any expression template data type is
// now allowed to define rules how to performa magic on itself.
FLINT_DEFINE_UNOP(magic)
// Finally, we need to explain how to perform magic on flintxx. This is again
// a rule.
namespace rules {
// The pattern should be familiar by now.
FLINT_DEFINE_UNARY_EXPR_COND(magic_op, fooxx, FOOXX_COND_S,
foo_magic(to._foo(), from._foo()))
} // rules
} // flint
#endif
///////////////////////////////////////////////////////////////////////////////
// Example program
///////////////////////////////////////////////////////////////////////////////
using namespace flint;
int
main()
{
fooxx a, b(4);
fooxx_ref ar(a);
fooxx_srcref br(b);
ar = 1 + br + 1; // a=6
std::cout << magic(a + (-1)) << '\n'; // 2*(6-1)+1 = 11
return 0;
}
|