File: add.c

package info (click to toggle)
flint 2.4.4-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 21,904 kB
  • ctags: 13,326
  • sloc: ansic: 208,848; cpp: 11,358; sh: 564; makefile: 250
file content (155 lines) | stat: -rw-r--r-- 3,880 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
/*=============================================================================

    This file is part of FLINT.

    FLINT is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    FLINT is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with FLINT; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA

=============================================================================*/
/******************************************************************************

    Copyright (C) 2011 Fredrik Johansson

******************************************************************************/

#include "fmpq.h"

void
_fmpq_add(fmpz_t rnum, fmpz_t rden, const fmpz_t p, const fmpz_t q,
            const fmpz_t r, const fmpz_t s)
{
    fmpz_t g, a, b, t, u;

    /* Same denominator */
    if (fmpz_equal(q, s))
    {
        fmpz_add(rnum, p, r);

        /* Both are integers */
        if (fmpz_is_one(q))
        {
            fmpz_set(rden, q);
        }
        else
        {
            fmpz_init(g);
            fmpz_gcd(g, rnum, q);

            if (fmpz_is_one(g))
            {
                fmpz_set(rden, q);
            }
            else
            {
                fmpz_divexact(rnum, rnum, g);
                fmpz_divexact(rden, q, g);
            }
            fmpz_clear(g);
        }
        return;
    }

    /* p/q is an integer */
    if (fmpz_is_one(q))
    {
        fmpz_init(t);
        fmpz_mul(t, p, s);
        fmpz_add(rnum, t, r);
        fmpz_set(rden, s);
        fmpz_clear(t);
        return;
    }

    /* r/s is an integer */
    if (fmpz_is_one(s))
    {
        fmpz_init(t);
        fmpz_mul(t, r, q);
        fmpz_add(rnum, t, p);
        fmpz_set(rden, q);
        fmpz_clear(t);
        return;
    }

    /*
    We want to compute p/q + r/s where the inputs are already
    in canonical form.

    If q and s are coprime, then (p*s + q*r, q*s) is in canonical form.

    Otherwise, let g = gcd(q, s) with q = g*a, s = g*b. Then the sum
    is given by ((p*b + r*a) / (a*b)) / g.

    As above, (p*b + r*a) / (a*b) is in canonical form, and g has
    no common factor with a*b. Thus we only need to reduce (p*b + r*a, g).
    If the gcd is 1, the reduced denominator is g*a*b = q*b.
    */
    fmpz_init(g);
    fmpz_gcd(g, q, s);

    if (fmpz_is_one(g))
    {
        fmpz_init(t);
        fmpz_init(u);

        fmpz_mul(t, p, s);
        fmpz_mul(u, q, r);
        fmpz_add(rnum, t, u);
        fmpz_mul(rden, q, s);

        fmpz_clear(t);
        fmpz_clear(u);
    }
    else
    {
        fmpz_init(a);
        fmpz_init(b);
        fmpz_init(t);
        fmpz_init(u);

        fmpz_divexact(a, q, g);
        fmpz_divexact(b, s, g);

        fmpz_mul(t, p, b);
        fmpz_mul(u, r, a);
        fmpz_add(rnum, t, u);

        fmpz_gcd(t, rnum, g);

        if (fmpz_is_one(t))
        {
            fmpz_mul(rden, q, b);
        }
        else
        {
            fmpz_divexact(rnum, rnum, t);
            fmpz_divexact(g, q, t);
            fmpz_mul(rden, g, b);
        }

        fmpz_clear(a);
        fmpz_clear(b);
        fmpz_clear(t);
        fmpz_clear(u);
    }

    fmpz_clear(g);
}

void fmpq_add(fmpq_t res, const fmpq_t op1, const fmpq_t op2)
{
    _fmpq_add(fmpq_numref(res), fmpq_denref(res),
              fmpq_numref(op1), fmpq_denref(op1),
              fmpq_numref(op2), fmpq_denref(op2));
}