1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
/*=============================================================================
This file is part of FLINT.
FLINT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
FLINT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FLINT; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2010 Fredrik Johansson
******************************************************************************/
#include <gmp.h>
#include "flint.h"
#include "fmpz.h"
#include "fmpz_vec.h"
#include "mpn_extras.h"
#include "ulong_extras.h"
void
fmpz_factor(fmpz_factor_t factor, const fmpz_t n)
{
ulong exp;
mp_limb_t p;
__mpz_struct * xsrc;
mp_ptr xd;
mp_size_t xsize;
slong found;
slong trial_start, trial_stop;
TMP_INIT;
if (!COEFF_IS_MPZ(*n))
{
fmpz_factor_si(factor, *n);
return;
}
_fmpz_factor_set_length(factor, 0);
/* Get sign and size */
xsrc = COEFF_TO_PTR(*n);
if (xsrc->_mp_size < 0)
{
xsize = -(xsrc->_mp_size);
factor->sign = -1;
}
else
{
xsize = xsrc->_mp_size;
factor->sign = 1;
}
/* Just a single limb */
if (xsize == 1)
{
_fmpz_factor_extend_factor_ui(factor, xsrc->_mp_d[0]);
return;
}
/* Create a temporary copy to be mutated */
TMP_START;
xd = TMP_ALLOC(xsize * sizeof(mp_limb_t));
flint_mpn_copyi(xd, xsrc->_mp_d, xsize);
/* Factor out powers of two */
xsize = flint_mpn_remove_2exp(xd, xsize, &exp);
if (exp != 0)
_fmpz_factor_append_ui(factor, UWORD(2), exp);
trial_start = 1;
trial_stop = 1000;
while (xsize > 1)
{
found = flint_mpn_factor_trial(xd, xsize, trial_start, trial_stop);
if (found)
{
p = n_primes_arr_readonly(found+1)[found];
exp = 1;
xsize = flint_mpn_divexact_1(xd, xsize, p);
/* Check if p^2 divides n */
if (flint_mpn_divisible_1_p(xd, xsize, p))
{
/* TODO: when searching for squarefree numbers
(Moebius function, etc), we can abort here. */
xsize = flint_mpn_divexact_1(xd, xsize, p);
exp = 2;
}
/* If we're up to cubes, then maybe there are higher powers */
if (exp == 2 && flint_mpn_divisible_1_p(xd, xsize, p))
{
xsize = flint_mpn_divexact_1(xd, xsize, p);
xsize = flint_mpn_remove_power_ascending(xd, xsize, &p, 1, &exp);
exp += 3;
}
_fmpz_factor_append_ui(factor, p, exp);
/* flint_printf("added %wu %wu\n", p, exp); */
/* Continue using only trial division whilst it is successful.
This allows quickly factoring huge highly composite numbers
such as factorials, which can arise in some applications. */
trial_start = found + 1;
trial_stop = trial_start + 1000;
continue;
}
else
{
/* Insert primality test, perfect power test, other factoring
algorithms here... */
trial_start = trial_stop;
trial_stop = trial_start + 1000;
}
}
/* Any single-limb factor left? */
if (xd[0] != 1)
_fmpz_factor_extend_factor_ui(factor, xd[0]);
TMP_END;
return;
}
|