1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
/*=============================================================================
This file is part of FLINT.
FLINT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
FLINT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FLINT; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2010 Sebastian Pancratz
******************************************************************************/
#include <stdlib.h>
#include <gmp.h>
#include "flint.h"
#include "fmpz.h"
#include "fmpz_vec.h"
#include "fmpz_poly.h"
/*
Assumptions.
Suppose that $len1 \geq 3$ and $len2 \geq 2$.
Definitions.
Define a sequence $(n_i)$ by $n_1 = \ceil{len1 / 2}$,
$n_2 = \ceil{n_1 / 2}$, etc. all the way to
$n_K = \ceil{n_{K-1} / 2} = 2$. Thus, $K = \ceil{\log_2 len1} - 1$.
Note that we can write $n_i = \ceil{len1 / 2^i}$.
Rough description (of the allocation process, or the algorithm).
Step 1.
For $0 \leq i < n_1$, set h[i] to something of length at most len2.
Set pow to $poly2^2$.
Step n.
For $0 \leq i < n_n$, set h[i] to something of length at most the length
of $poly2^{2^n - 1}$.
Set pow to $poly^{2^n}$.
Step K.
For $0 \leq i < n_K$, set h[i] to something of length at most the length
of $poly2^{2^K - 1}$.
Set pow to $poly^{2^K}$.
Analysis of the space requirements.
Let $S$ be the over all space we need, measured in number of coefficients.
Then
\begin{align*}
S & = 2 \times \bigl[ (2^K - 1) (len2 - 1) + 1 \bigr]
+ \sum_{i=1}^{K-1} (n_i - n_{i+1}) \bigl[(2^i - 1) (len2 - 1) + 1\bigr] \\
& = 2 \times \bigl[ (2^K - 1) (len2 - 1) + 1 \bigr]
+ (len2 - 1) \sum_{i=1}^{K-1} (n_i - n_{i+1}) (2^i - 1) + n_1 - n_K.
\end{align*}
If $K = 1$, or equivalently $len1$ is 3 or 4, then $S = 2 \times len2$.
Otherwise, we can bound $n_i - n_{i+1}$ from above as follows. For any
non-negative integer $x$,
\begin{equation*}
\ceil{x / 2^i} - \ceil{x / 2^{i+1}} \leq x/2^i - x/2^{i+1} = x / 2^{i+1}.
\end{equation*}
Thus,
\begin{align*}
S & \leq 2 \times \bigl[ (2^K - 1) (len2 - 1) + 1 \bigr]
+ (len2 - 1) \times len1 \times \sum_{i=1}^{K-1} (1/2 - 1/2^{i+1}) \\
& \leq 2 \times \bigl[ (2^K - 1) (len2 - 1) + 1 \bigr]
+ (len2 - 1) \times len1 \times (K/2 + 1).
\end{align*}
*/
void
_fmpz_poly_compose_divconquer(fmpz * res, const fmpz * poly1, slong len1,
const fmpz * poly2, slong len2)
{
slong i, j, k, n;
slong *hlen, alloc, powlen;
fmpz *v, **h, *pow, *temp;
if (len1 <= 2 || len2 <= 1)
{
if (len1 == 1)
fmpz_set(res, poly1);
else if (len2 == 1)
_fmpz_poly_evaluate_fmpz(res, poly1, len1, poly2);
else /* len1 == 2 */
_fmpz_poly_compose_horner(res, poly1, len1, poly2, len2);
return;
}
/* Initialisation */
hlen = (slong *) flint_malloc(((len1 + 1) / 2) * sizeof(slong));
k = FLINT_CLOG2(len1) - 1;
hlen[0] = hlen[1] = ((1 << k) - 1) * (len2 - 1) + 1;
for (i = k - 1; i > 0; i--)
{
slong hi = (len1 + (1 << i) - 1) / (1 << i);
for (n = (hi + 1) / 2; n < hi; n++)
hlen[n] = ((1 << i) - 1) * (len2 - 1) + 1;
}
powlen = (1 << k) * (len2 - 1) + 1;
alloc = 0;
for (i = 0; i < (len1 + 1) / 2; i++)
alloc += hlen[i];
v = _fmpz_vec_init(alloc + 2 * powlen);
h = (fmpz **) flint_malloc(((len1 + 1) / 2) * sizeof(fmpz *));
h[0] = v;
for (i = 0; i < (len1 - 1) / 2; i++)
{
h[i + 1] = h[i] + hlen[i];
hlen[i] = 0;
}
hlen[(len1 - 1) / 2] = 0;
pow = v + alloc;
temp = pow + powlen;
/* Let's start the actual work */
for (i = 0, j = 0; i < len1 / 2; i++, j += 2)
{
if (poly1[j + 1] != WORD(0))
{
_fmpz_vec_scalar_mul_fmpz(h[i], poly2, len2, poly1 + j + 1);
fmpz_add(h[i], h[i], poly1 + j);
hlen[i] = len2;
}
else if (poly1[j] != WORD(0))
{
fmpz_set(h[i], poly1 + j);
hlen[i] = 1;
}
}
if ((len1 & WORD(1)))
{
if (poly1[j] != WORD(0))
{
fmpz_set(h[i], poly1 + j);
hlen[i] = 1;
}
}
_fmpz_poly_sqr(pow, poly2, len2);
powlen = 2 * len2 - 1;
for (n = (len1 + 1) / 2; n > 2; n = (n + 1) / 2)
{
if (hlen[1] > 0)
{
slong templen = powlen + hlen[1] - 1;
_fmpz_poly_mul(temp, pow, powlen, h[1], hlen[1]);
_fmpz_poly_add(h[0], temp, templen, h[0], hlen[0]);
hlen[0] = FLINT_MAX(hlen[0], templen);
}
for (i = 1; i < n / 2; i++)
{
if (hlen[2*i + 1] > 0)
{
_fmpz_poly_mul(h[i], pow, powlen, h[2*i + 1], hlen[2*i + 1]);
hlen[i] = hlen[2*i + 1] + powlen - 1;
} else
hlen[i] = 0;
_fmpz_poly_add(h[i], h[i], hlen[i], h[2*i], hlen[2*i]);
hlen[i] = FLINT_MAX(hlen[i], hlen[2*i]);
}
if ((n & WORD(1)))
{
_fmpz_vec_set(h[i], h[2*i], hlen[2*i]);
hlen[i] = hlen[2*i];
}
_fmpz_poly_sqr(temp, pow, powlen);
powlen += powlen - 1;
{
fmpz * t = pow;
pow = temp;
temp = t;
}
}
_fmpz_poly_mul(res, pow, powlen, h[1], hlen[1]);
_fmpz_vec_add(res, res, h[0], hlen[0]);
_fmpz_vec_clear(v, alloc + 2 * powlen);
flint_free(h);
flint_free(hlen);
}
void
fmpz_poly_compose_divconquer(fmpz_poly_t res,
const fmpz_poly_t poly1, const fmpz_poly_t poly2)
{
const slong len1 = poly1->length;
const slong len2 = poly2->length;
slong lenr;
if (len1 == 0)
{
fmpz_poly_zero(res);
return;
}
if (len1 == 1 || len2 == 0)
{
fmpz_poly_set_fmpz(res, poly1->coeffs);
return;
}
lenr = (len1 - 1) * (len2 - 1) + 1;
if (res != poly1 && res != poly2)
{
fmpz_poly_fit_length(res, lenr);
_fmpz_poly_compose_divconquer(res->coeffs, poly1->coeffs, len1,
poly2->coeffs, len2);
_fmpz_poly_set_length(res, lenr);
_fmpz_poly_normalise(res);
}
else
{
fmpz_poly_t t;
fmpz_poly_init2(t, lenr);
_fmpz_poly_compose_divconquer(t->coeffs, poly1->coeffs, len1,
poly2->coeffs, len2);
_fmpz_poly_set_length(t, lenr);
_fmpz_poly_normalise(t);
fmpz_poly_swap(res, t);
fmpz_poly_clear(t);
}
}
|