1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
|
/*=============================================================================
This file is part of FLINT.
FLINT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
FLINT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FLINT; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2011 William Hart
******************************************************************************/
#include <gmp.h>
#include "flint.h"
#include "fmpz.h"
#include "fmpz_vec.h"
#include "fmpz_poly.h"
#include "mpn_extras.h"
void _fmpz_poly_gcd_modular(fmpz * res, const fmpz * poly1, slong len1,
const fmpz * poly2, slong len2)
{
mp_bitcnt_t bits1, bits2, nb1, nb2, bits_small, pbits, curr_bits = 0, new_bits;
fmpz_t ac, bc, hc, d, g, l, eval_A, eval_B, eval_GCD, modulus;
fmpz * A, * B, * Q, * lead_A, * lead_B;
mp_ptr a, b, h;
mp_limb_t p, h_inv, g_mod;
nmod_t mod;
slong i, n, n0, unlucky, hlen, bound;
int g_pm1;
fmpz_init(ac);
fmpz_init(bc);
fmpz_init(d);
/* compute gcd of content of poly1 and poly2 */
_fmpz_vec_content(ac, poly1, len1);
_fmpz_vec_content(bc, poly2, len2);
fmpz_gcd(d, ac, bc);
/* special case, one of the polys is a constant */
if (len2 == 1) /* if len1 == 1 then so does len2 */
{
fmpz_set(res, d);
fmpz_clear(ac);
fmpz_clear(bc);
fmpz_clear(d);
return;
}
/* divide poly1 and poly2 by their content */
A = _fmpz_vec_init(len1);
B = _fmpz_vec_init(len2);
_fmpz_vec_scalar_divexact_fmpz(A, poly1, len1, ac);
_fmpz_vec_scalar_divexact_fmpz(B, poly2, len2, bc);
fmpz_clear(ac);
fmpz_clear(bc);
/* get bound on size of gcd coefficients */
lead_A = A + len1 - 1;
lead_B = B + len2 - 1;
bits1 = _fmpz_vec_max_bits(A, len1); bits1 = FLINT_ABS(bits1);
bits2 = _fmpz_vec_max_bits(B, len2); bits2 = FLINT_ABS(bits2);
fmpz_init(l);
if (len1 < 64 && len2 < 64) /* compute the squares of the 2-norms */
{
fmpz_set_ui(l, 0);
for (i = 0; i < len1; i++)
fmpz_addmul(l, A + i, A + i);
nb1 = fmpz_bits(l);
fmpz_set_ui(l, 0);
for (i = 0; i < len2; i++)
fmpz_addmul(l, B + i, B + i);
nb2 = fmpz_bits(l);
} else /* approximate to save time */
{
nb1 = 2*bits1 + FLINT_BIT_COUNT(len1);
nb2 = 2*bits2 + FLINT_BIT_COUNT(len2);
}
/* get gcd of leading coefficients */
fmpz_init(g);
fmpz_gcd(g, lead_A, lead_B);
fmpz_mul(l, lead_A, lead_B);
g_pm1 = fmpz_is_pm1(g);
/* evaluate -A at -1 */
fmpz_init(eval_A);
for (i = 0; i < len1; i++)
{
if (i & 1) fmpz_add(eval_A, eval_A, A + i);
else fmpz_sub(eval_A, eval_A, A + i);
}
/* evaluate -B at -1 */
fmpz_init(eval_B);
for (i = 0; i < len2; i++)
{
if (i & 1) fmpz_add(eval_B, eval_B, B + i);
else fmpz_sub(eval_B, eval_B, B + i);
}
/* compute the gcd of eval(-A, -1) and eval(-B, -1) */
fmpz_init(eval_GCD);
fmpz_gcd(eval_GCD, eval_A, eval_B);
/* compute a heuristic bound after which we should begin checking if we're done */
bits_small = FLINT_MAX(fmpz_bits(eval_GCD), fmpz_bits(g));
if (bits_small < WORD(2)) bits_small = 2;
fmpz_clear(eval_GCD);
fmpz_clear(eval_A);
fmpz_clear(eval_B);
/* set size of first prime */
pbits = FLINT_BITS - 1;
p = (UWORD(1)<<pbits);
fmpz_init(modulus);
fmpz_init(hc);
Q = _fmpz_vec_init(len1);
/* make space for polynomials mod p */
a = _nmod_vec_init(len1);
b = _nmod_vec_init(len2);
h = _nmod_vec_init(len2);
/* zero entire output */
_fmpz_vec_zero(res, len2);
n = len2;
/* current bound on length of result
the bound we use is from section 6 of
http://cs.nyu.edu/~yap/book/alge/ftpSite/l4.ps.gz
*/
n0 = len1 - 1;
bound = (n0 + 3)*FLINT_MAX(nb1, nb2) + (n0 + 1); /* initialise bound */
unlucky = 0;
for (;;)
{
/* get new prime and initialise modulus */
p = n_nextprime(p, 0);
if (fmpz_fdiv_ui(l, p) == 0)
{
unlucky += pbits;
continue;
}
nmod_init(&mod, p);
/* reduce polynomials modulo p */
_fmpz_vec_get_nmod_vec(a, A, len1, mod);
_fmpz_vec_get_nmod_vec(b, B, len2, mod);
/* compute gcd over Z/pZ */
hlen = _nmod_poly_gcd(h, a, len1, b, len2, mod);
if (hlen == 1) /* gcd is 1 */
{
fmpz_one(res);
_fmpz_vec_zero(res + 1, len2 - 1);
break;
}
if (hlen > n + 1) /* discard this prime */
{
unlucky += pbits;
continue;
}
/* scale new polynomial mod p appropriately */
if (g_pm1) _nmod_poly_make_monic(h, h, hlen, mod);
else
{
h_inv = n_invmod(h[hlen - 1], mod.n);
g_mod = fmpz_fdiv_ui(g, mod.n);
h_inv = n_mulmod2_preinv(h_inv, g_mod, mod.n, mod.ninv);
_nmod_vec_scalar_mul_nmod(h, h, hlen, h_inv, mod);
}
if (hlen <= n) /* we have a new bound on size of result */
{
unlucky += fmpz_bits(modulus);
_fmpz_vec_set_nmod_vec(res, h, hlen, mod);
_fmpz_vec_zero(res + hlen, len2 - hlen);
if (g_pm1)
{
/* are we done? */
if (_fmpz_poly_divides(Q, B, len2, res, hlen) &&
_fmpz_poly_divides(Q, A, len1, res, hlen))
break;
}
else
{
if (pbits + unlucky >= bound) /* if we reach the bound with one prime */
{
_fmpz_vec_content(hc, res, hlen);
/* divide by content */
_fmpz_vec_scalar_divexact_fmpz(res, res, hlen, hc);
break;
}
if (pbits >= bits_small) /* if one prime is already big enough to check */
{
/* divide by content */
_fmpz_vec_content(hc, res, hlen);
/* correct sign of leading term */
if (fmpz_sgn(res + hlen - 1) < 0)
fmpz_neg(hc, hc);
_fmpz_vec_scalar_divexact_fmpz(res, res, hlen, hc);
/* are we done? */
if (_fmpz_poly_divides(Q, B, len2, res, hlen) &&
_fmpz_poly_divides(Q, A, len1, res, hlen))
break;
/* no, so multiply by content again */
_fmpz_vec_scalar_mul_fmpz(res, res, hlen, hc);
}
}
curr_bits = FLINT_ABS(_fmpz_vec_max_bits(res, hlen));
fmpz_set_ui(modulus, p);
n = hlen - 1; /* if we reach this we have a new bound on length of result */
continue;
}
_fmpz_poly_CRT_ui(res, res, hlen, modulus, h, hlen, mod.n, mod.ninv, 1);
fmpz_mul_ui(modulus, modulus, mod.n);
new_bits = _fmpz_vec_max_bits(res, hlen);
new_bits = FLINT_ABS(new_bits);
if (new_bits == curr_bits || fmpz_bits(modulus) >= bits_small)
{
if (!g_pm1)
{
_fmpz_vec_content(hc, res, hlen);
/* correct sign of leading term */
if (fmpz_sgn(res + hlen - 1) < 0)
fmpz_neg(hc, hc);
/* divide by content */
_fmpz_vec_scalar_divexact_fmpz(res, res, hlen, hc);
}
if (fmpz_bits(modulus) + unlucky >= bound)
break;
/* are we done? */
if (_fmpz_poly_divides(Q, B, len2, res, hlen) &&
_fmpz_poly_divides(Q, A, len1, res, hlen))
break;
if (!g_pm1)
{
/* no, so multiply by content again */
_fmpz_vec_scalar_mul_fmpz(res, res, hlen, hc);
}
}
curr_bits = new_bits;
}
fmpz_clear(modulus);
fmpz_clear(g);
fmpz_clear(l);
fmpz_clear(hc);
_nmod_vec_clear(a);
_nmod_vec_clear(b);
_nmod_vec_clear(h);
/* finally multiply by content */
_fmpz_vec_scalar_mul_fmpz(res, res, hlen, d);
fmpz_clear(d);
_fmpz_vec_clear(A, len1);
_fmpz_vec_clear(B, len2);
_fmpz_vec_clear(Q, len1);
}
void
fmpz_poly_gcd_modular(fmpz_poly_t res, const fmpz_poly_t poly1,
const fmpz_poly_t poly2)
{
if (poly1->length < poly2->length)
{
fmpz_poly_gcd_modular(res, poly2, poly1);
}
else /* len1 >= len2 >= 0 */
{
const slong len1 = poly1->length;
const slong len2 = poly2->length;
if (len1 == 0) /* len1 = len2 = 0 */
{
fmpz_poly_zero(res);
}
else if (len2 == 0) /* len1 > len2 = 0 */
{
if (fmpz_sgn(poly1->coeffs + (len1 - 1)) > 0)
fmpz_poly_set(res, poly1);
else
fmpz_poly_neg(res, poly1);
}
else /* len1 >= len2 >= 1 */
{
/* underscore function automatically aliases */
fmpz_poly_fit_length(res, len2);
_fmpz_poly_gcd_modular(res->coeffs, poly1->coeffs, len1,
poly2->coeffs, len2);
_fmpz_poly_set_length(res, len2);
_fmpz_poly_normalise(res);
}
}
}
|