File: sqrt_classical.c

package info (click to toggle)
flint 2.4.4-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 21,904 kB
  • ctags: 13,326
  • sloc: ansic: 208,848; cpp: 11,358; sh: 564; makefile: 250
file content (134 lines) | stat: -rw-r--r-- 3,629 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/*=============================================================================

    This file is part of FLINT.

    FLINT is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    FLINT is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with FLINT; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA

=============================================================================*/
/******************************************************************************

    Copyright (C) 2012 Fredrik Johansson

******************************************************************************/

#include <gmp.h>
#include "flint.h"
#include "fmpz.h"
#include "fmpz_poly.h"

int
_fmpz_poly_sqrt_classical(fmpz * res, const fmpz * poly, slong len)
{
    slong i, m;
    int result;

    /* the degree must be even */
    if (len % 2 == 0)
        return 0;

    /* valuation must be even, and then can be reduced to 0 */
    while (fmpz_is_zero(poly))
    {
        if (!fmpz_is_zero(poly + 1))
            return 0;

        fmpz_zero(res);
        poly += 2;
        len -= 2;
        res++;
    }

    /* check whether a square root exists modulo 2 */
    for (i = 1; i < len; i += 2)
        if (!fmpz_is_even(poly + i))
            return 0;

    /* check endpoints */
    if (!fmpz_is_square(poly) || (len > 1 && !fmpz_is_square(poly + len - 1)))
        return 0;

    /* square root of leading coefficient */
    m = (len + 1) / 2;
    fmpz_sqrt(res + m - 1, poly + len - 1);
    result = 1;

    /* do slong divison style 'square root with remainder' from top to bottom */
    if (len > 1)
    {
        fmpz_t t, u;
        fmpz * r;

        fmpz_init(t);
        fmpz_init(u);
        r = _fmpz_vec_init(len);
        _fmpz_vec_set(r, poly, len);
        fmpz_mul_ui(u, res + m - 1, 2);

        for (i = 1; i < m; i++)
        {
            fmpz_fdiv_qr(res + m - i - 1, t, r + len - i - 1, u);
            if (!fmpz_is_zero(t))
            {
                result = 0;
                break;
            }

            fmpz_mul_si(t, res + m - i - 1, -2);
            _fmpz_vec_scalar_addmul_fmpz(r + len - 2*i, res + m - i, i - 1, t);
            fmpz_submul(r + len - 2*i - 1, res + m - i - 1, res + m - i - 1);
        }

        for (i = m; i < len && result; i++)
            if (!fmpz_is_zero(r + len - 1 - i))
                result = 0;

        _fmpz_vec_clear(r, len);
        fmpz_clear(t);
        fmpz_clear(u);
    }

    return result;
}

int
fmpz_poly_sqrt_classical(fmpz_poly_t b, const fmpz_poly_t a)
{
    slong blen, len = a->length;
    int result;

    if (len % 2 == 0)
    {
        fmpz_poly_zero(b);
        return len == 0;
    }

    if (b == a)
    {
        fmpz_poly_t tmp;
        fmpz_poly_init(tmp);
        result = fmpz_poly_sqrt_classical(tmp, a);
        fmpz_poly_swap(b, tmp);
        fmpz_poly_clear(tmp);
        return result;
    }

    blen = len / 2 + 1;
    fmpz_poly_fit_length(b, blen);
    _fmpz_poly_set_length(b, blen);
    result = _fmpz_poly_sqrt_classical(b->coeffs, a->coeffs, len);
    if (!result)
        _fmpz_poly_set_length(b, 0);
    return result;
}