File: factor_zassenhaus.c

package info (click to toggle)
flint 2.4.4-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 21,904 kB
  • ctags: 13,326
  • sloc: ansic: 208,848; cpp: 11,358; sh: 564; makefile: 250
file content (290 lines) | stat: -rw-r--r-- 8,199 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
/*=============================================================================

    This file is part of FLINT.

    FLINT is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    FLINT is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with FLINT; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA

=============================================================================*/
/******************************************************************************

    Copyright (C) 2011 Andy Novocin
    Copyright (C) 2011 Sebastian Pancratz
   
******************************************************************************/

#include <stdlib.h>
#include "fmpz_poly.h"

#define TRACE_ZASSENHAUS 0

/*
    Let $f$ be a polynomial of degree $m = \deg(f) \geq 2$. 
    If another polynomial $g$ divides $f$ then, for all 
    $0 \leq j \leq \deg(g)$, 
    \begin{equation*}
    \abs{b_j} \leq \binom{n-1}{j} \abs{f} + \binom{n-1}{j-1} \abs{a_m}
    \end{equation*}
    where $\abs{f}$ denotes the $2$-norm of $f$.  This bound 
    is due to Mignotte, see e.g., Cohen p.\ 134.

    This function sets $B$ such that, for all $0 \leq j \leq \deg(g)$, 
    $\abs{b_j} \leq B$.

    Consequently, when proceeding with Hensel lifting, we 
    proceed to choose an $a$ such that $p^a \geq 2 B + 1$, 
    e.g., $a = \ceil{\log_p(2B + 1)}$.

    Note that the formula degenerates for $j = 0$ and $j = n$ 
    and so in this case we use that the leading (resp.\ constant) 
    term of $g$ divides the leading (resp.\ constant) term of $f$.
 */
static void _fmpz_poly_factor_mignotte(fmpz_t B, const fmpz *f, slong m)
{
    slong j;
    fmpz_t b, f2, lc, s, t;

    fmpz_init(b);
    fmpz_init(f2);
    fmpz_init(lc);
    fmpz_init(s);
    fmpz_init(t);

    for (j = 0; j <= m; j++)
        fmpz_addmul(f2, f + j, f + j);
    fmpz_sqrt(f2, f2);
    fmpz_add_ui(f2, f2, 1);

    fmpz_abs(lc, f + m);

    fmpz_abs(B, f + 0);

    /*  We have $b = \binom{m-1}{j-1}$ on loop entry and 
        $b = \binom{m-1}{j}$ on exit. */
    fmpz_set_ui(b, m-1);
    for (j = 1; j < m; j++)
    {
        fmpz_mul(t, b, lc);

        fmpz_mul_ui(b, b, m - j);
        fmpz_divexact_ui(b, b, j);

        fmpz_mul(s, b, f2);
        fmpz_add(s, s, t);
        if (fmpz_cmp(B, s) < 0)
            fmpz_set(B, s);
    }

    if (fmpz_cmp(B, lc) < 0)
        fmpz_set(B, lc);

    fmpz_clear(b);
    fmpz_clear(f2);
    fmpz_clear(lc);
    fmpz_clear(s);
    fmpz_clear(t);
}

static void fmpz_poly_factor_mignotte(fmpz_t B, const fmpz_poly_t f)
{
    _fmpz_poly_factor_mignotte(B, f->coeffs, f->length - 1);
}

void _fmpz_poly_factor_zassenhaus(fmpz_poly_factor_t final_fac, 
                                  slong exp, const fmpz_poly_t f, slong cutoff)
{
    const slong lenF = f->length;

    #if TRACE_ZASSENHAUS == 1
    flint_printf("\n[Zassenhaus]\n");
    flint_printf("|f = "), fmpz_poly_print(f), flint_printf("\n");
    #endif

    if (lenF == 2)
    {
        fmpz_poly_factor_insert(final_fac, f, exp);
    }
    else
    {
        slong i;
        slong r = lenF;
        mp_limb_t p = 2;
        nmod_poly_t d, g, t;
        nmod_poly_factor_t fac;

        nmod_poly_factor_init(fac);
        nmod_poly_init_preinv(t, 1, 0);
        nmod_poly_init_preinv(d, 1, 0);
        nmod_poly_init_preinv(g, 1, 0);

        for (i = 0; i < 3; i++)
        {
            for ( ; ; p = n_nextprime(p, 0))
            {
                nmod_t mod;

                nmod_init(&mod, p);
                d->mod = mod;
                g->mod = mod;
                t->mod = mod;

                fmpz_poly_get_nmod_poly(t, f);
                if (t->length == lenF)
                {
                    nmod_poly_derivative(d, t);
                    nmod_poly_gcd(g, t, d);

                    if (nmod_poly_is_one(g))
                    {
                        nmod_poly_factor_t temp_fac;

                        nmod_poly_factor_init(temp_fac);
                        nmod_poly_factor(temp_fac, t);

                        if (temp_fac->num <= r)
                        {
                            r = temp_fac->num;
                            nmod_poly_factor_set(fac, temp_fac);
                        }
                        nmod_poly_factor_clear(temp_fac);
                        break;
                    }
                }
            }
            p = n_nextprime(p, 0);
        }
        nmod_poly_clear(d);
        nmod_poly_clear(g);
        nmod_poly_clear(t);

        if (r > cutoff)
        {
            flint_printf("Exception (fmpz_poly_factor_zassenhaus). r > cutoff.\n");
            nmod_poly_factor_clear(fac);
            abort();
        }
        else if (r == 1)
        {
            fmpz_poly_factor_insert(final_fac, f, exp);
        }
        else
        {
            slong a;
            fmpz_poly_factor_t lifted_fac;
            fmpz_poly_factor_init(lifted_fac);

            p = (fac->p + 0)->mod.n;
            {
                fmpz_t B;
                fmpz_init(B);
                fmpz_poly_factor_mignotte(B, f);
                fmpz_mul_ui(B, B, 2);
                fmpz_add_ui(B, B, 1);
                a = fmpz_clog_ui(B, p);
                fmpz_clear(B);
            }

            /* TODO: Check if use_Hoeij_Novocin and try smaller a. */
            fmpz_poly_hensel_lift_once(lifted_fac, f, fac, a);

            #if TRACE_ZASSENHAUS == 1
            flint_printf("|p = %wd, a = %wd\n", p, a);
            flint_printf("|Pre hensel lift factorisation (nmod_poly):\n");
            nmod_poly_factor_print(fac);
            flint_printf("|Post hensel lift factorisation (fmpz_poly):\n");
            fmpz_poly_factor_print(lifted_fac);
            #endif

            /* Recombination */
            {
                fmpz_t P;
                fmpz_init(P);
                fmpz_set_ui(P, p);
                fmpz_pow_ui(P, P, a);

                fmpz_poly_factor_zassenhaus_recombination(final_fac, lifted_fac, f, P, exp);

                fmpz_clear(P);
            }

            fmpz_poly_factor_clear(lifted_fac);
        }
        nmod_poly_factor_clear(fac);
    }
}

void fmpz_poly_factor_zassenhaus(fmpz_poly_factor_t fac, const fmpz_poly_t G)
{
    const slong lenG = G->length;
    fmpz_poly_t g;

    if (lenG == 0)
    {
        fmpz_set_ui(&fac->c, 0);
        return;
    }
    if (lenG == 1)
    {
        fmpz_set(&fac->c, G->coeffs);
        return;
    }

    fmpz_poly_init(g);

    if (lenG == 2)
    {
        fmpz_poly_content(&fac->c, G);
        if (fmpz_sgn(fmpz_poly_lead(G)) < 0)
            fmpz_neg(&fac->c, &fac->c);
        fmpz_poly_scalar_divexact_fmpz(g, G, &fac->c);
        fmpz_poly_factor_insert(fac, g, 1);
    }
    else
    {
        slong j, k;
        fmpz_poly_factor_t sq_fr_fac;

        /* Does a presearch for a factor of form x^k */
        for (k = 0; fmpz_is_zero(G->coeffs + k); k++) ;

        if (k != 0)
        {
            fmpz_poly_t t;

            fmpz_poly_init(t);
            fmpz_poly_set_coeff_ui(t, 1, 1);
            fmpz_poly_factor_insert(fac, t, k);
            fmpz_poly_clear(t);
        }

        fmpz_poly_shift_right(g, G, k);

        /* Could make other tests for x-1 or simple things 
           maybe take advantage of the composition algorithm */
        fmpz_poly_factor_init(sq_fr_fac);
        fmpz_poly_factor_squarefree(sq_fr_fac, g);

        fmpz_set(&fac->c, &sq_fr_fac->c);

        /* Factor each square-free part */
        for (j = 0; j < sq_fr_fac->num; j++)
            _fmpz_poly_factor_zassenhaus(fac, sq_fr_fac->exp[j], sq_fr_fac->p + j, 10);

        fmpz_poly_factor_clear(sq_fr_fac);
    }
    fmpz_poly_clear(g);
}

#undef TRACE_ZASSENHAUS