1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
/*=============================================================================
This file is part of FLINT.
FLINT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
FLINT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FLINT; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2010 William Hart
Copyright (C) 2011 Fredrik Johansson
Copyright (C) 2011 Sebastian Pancratz
******************************************************************************/
*******************************************************************************
Factorisation
*******************************************************************************
void nmod_poly_factor_init(nmod_poly_factor_t fac)
Initialises \code{fac} for use. An \code{nmod_poly_factor_t}
represents a polynomial in factorised form as a product of
polynomials with associated exponents.
void nmod_poly_factor_clear(nmod_poly_factor_t fac)
Frees all memory associated with \code{fac}.
void nmod_poly_factor_realloc(nmod_poly_factor_t fac, slong alloc)
Reallocates the factor structure to provide space for
precisely \code{alloc} factors.
void nmod_poly_factor_fit_length(nmod_poly_factor_t fac, slong len)
Ensures that the factor structure has space for at
least \code{len} factors. This functions takes care
of the case of repeated calls by always at least
doubling the number of factors the structure can hold.
void nmod_poly_factor_set(nmod_poly_factor_t res, const nmod_poly_factor_t fac)
Sets \code{res} to the same factorisation as \code{fac}.
void nmod_poly_factor_print(const nmod_poly_factor_t fac)
Prints the entries of \code{fac} to standard output.
void nmod_poly_factor_insert(nmod_poly_factor_t fac,
const nmod_poly_t poly, slong exp)
Inserts the factor \code{poly} with multiplicity \code{exp} into
the factorisation \code{fac}.
If \code{fac} already contains \code{poly}, then \code{exp} simply
gets added to the exponent of the existing entry.
void nmod_poly_factor_concat(nmod_poly_factor_t res,
const nmod_poly_factor_t fac)
Concatenates two factorisations.
This is equivalent to calling \code{nmod_poly_factor_insert()}
repeatedly with the individual factors of \code{fac}.
Does not support aliasing between \code{res} and \code{fac}.
void nmod_poly_factor_pow(nmod_poly_factor_t fac, slong exp)
Raises \code{fac} to the power \code{exp}.
ulong nmod_poly_remove(nmod_poly_t f, const nmod_poly_t p)
Removes the highest possible power of \code{p} from \code{f} and
returns the exponent.
int nmod_poly_is_irreducible(const nmod_poly_t f)
Returns 1 if the polynomial \code{f} is irreducible, otherwise returns 0.
int nmod_poly_is_irreducible_ddf(const nmod_poly_t f)
Returns 1 if the polynomial \code{f} is irreducible, otherwise returns 0.
Uses fast distinct-degree factorisation.
int nmod_poly_is_irreducible_rabin(const nmod_poly_t f)
Returns 1 if the polynomial \code{f} is irreducible, otherwise returns 0.
Uses Rabin irreducibility test.
int _nmod_poly_is_squarefree(mp_srcptr f, slong len, nmod_t mod)
Returns 1 if \code{(f, len)} is squarefree, and 0 otherwise. As a
special case, the zero polynomial is not considered squarefree.
There are no restrictions on the length.
int nmod_poly_is_squarefree(const nmod_poly_t f)
Returns 1 if \code{f} is squarefree, and 0 otherwise. As a special
case, the zero polynomial is not considered squarefree.
void nmod_poly_factor_squarefree(nmod_poly_factor_t res, const nmod_poly_t f)
Sets \code{res} to a square-free factorization of \code{f}.
int nmod_poly_factor_equal_deg_prob(nmod_poly_t factor,
flint_rand_t state, const nmod_poly_t pol, slong d)
Probabilistic equal degree factorisation of \code{pol} into
irreducible factors of degree \code{d}. If it passes, a factor is
placed in factor and 1 is returned, otherwise 0 is returned and
the value of factor is undetermined.
Requires that \code{pol} be monic, non-constant and squarefree.
void nmod_poly_factor_equal_deg(nmod_poly_factor_t factors,
const nmod_poly_t pol, slong d)
Assuming \code{pol} is a product of irreducible factors all of
degree \code{d}, finds all those factors and places them in factors.
Requires that \code{pol} be monic, non-constant and squarefree.
void nmod_poly_factor_distinct_deg(nmod_poly_factor_t res,
const nmod_poly_t poly, slong * const *degs)
Factorises a monic non-constant squarefree polymnomial \code{poly}
of degree n into factors $f[d]$ such that for $1 \leq d \leq n$
$f[d]$ is the product of the monic irreducible factors of \code{poly}
of degree $d$. Factors $f[d]$ are stored in \code{res}, and the degree $d$
of the irreducible factors is stored in \code{degs} in the same order
as the factors.
Requires that \code{degs} has enough space for $(n/2)+1 * sizeof(slong)$.
void nmod_poly_factor_cantor_zassenhaus(nmod_poly_factor_t res,
const nmod_poly_t f)
Factorises a non-constant polynomial \code{f} into monic irreducible
factors using the Cantor-Zassenhaus algorithm.
void nmod_poly_factor_berlekamp(nmod_poly_factor_t res, const nmod_poly_t f)
Factorises a non-constant, squarefree polynomial \code{f} into monic
irreducible factors using the Berlekamp algorithm.
void nmod_poly_factor_kaltofen_shoup(nmod_poly_factor_t res,
const nmod_poly_t poly)
Factorises a non-constant polynomial \code{f} into monic irreducible
factors using the fast version of Cantor-Zassenhaus algorithm proposed by
Kaltofen and Shoup (1998). More precisely this algorithm uses a
“baby step/giant step” strategy for the distinct-degree factorization
step.
mp_limb_t nmod_poly_factor_with_berlekamp(nmod_poly_factor_t res,
const nmod_poly_t f)
Factorises a general polynomial \code{f} into monic irreducible factors
and returns the leading coefficient of \code{f}, or 0 if \code{f}
is the zero polynomial.
This function first checks for small special cases, deflates \code{f}
if it is of the form $p(x^m)$ for some $m > 1$, then performs a
square-free factorisation, and finally runs Berlekamp on all the
individual square-free factors.
mp_limb_t nmod_poly_factor_with_cantor_zassenhaus(nmod_poly_factor_t res,
const nmod_poly_t f)
Factorises a general polynomial \code{f} into monic irreducible factors
and returns the leading coefficient of \code{f}, or 0 if \code{f}
is the zero polynomial.
This function first checks for small special cases, deflates \code{f}
if it is of the form $p(x^m)$ for some $m > 1$, then performs a
square-free factorisation, and finally runs Cantor-Zassenhaus on all the
individual square-free factors.
mp_limb_t nmod_poly_factor_with_kaltofen_shoup(nmod_poly_factor_t res,
const nmod_poly_t f)
Factorises a general polynomial \code{f} into monic irreducible factors
and returns the leading coefficient of \code{f}, or 0 if \code{f}
is the zero polynomial.
This function first checks for small special cases, deflates \code{f}
if it is of the form $p(x^m)$ for some $m > 1$, then performs a
square-free factorisation, and finally runs Kaltofen-Shoup on all the
individual square-free factors.
mp_limb_t nmod_poly_factor(nmod_poly_factor_t res, const nmod_poly_t f)
Factorises a general polynomial \code{f} into monic irreducible factors
and returns the leading coefficient of \code{f}, or 0 if \code{f}
is the zero polynomial.
This function first checks for small special cases, deflates \code{f}
if it is of the form $p(x^m)$ for some $m > 1$, then performs a
square-free factorisation, and finally runs either Cantor-Zassenhaus
or Berlekamp on all the individual square-free factors.
Currently Cantor-Zassenhaus is used by default unless the modulus is 2, in
which case Berlekamp is used.
|