1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
/*=============================================================================
This file is part of FLINT.
FLINT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
FLINT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FLINT; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2007 David Howden
Copyright (C) 2007, 2008, 2009, 2010 William Hart
Copyright (C) 2008 Richard Howell-Peak
Copyright (C) 2011 Fredrik Johansson
******************************************************************************/
#include <stdio.h>
#include <gmp.h>
#include <math.h>
#include "flint.h"
#include "nmod_poly.h"
#include "ulong_extras.h"
#define ZASSENHAUS 0
#define BERLEKAMP 1
#define KALTOFEN 2
static __inline__ void
__nmod_poly_factor1(nmod_poly_factor_t res, const nmod_poly_t f, int algorithm)
{
if (algorithm == KALTOFEN)
nmod_poly_factor_kaltofen_shoup(res, f);
else if (algorithm == ZASSENHAUS)
nmod_poly_factor_cantor_zassenhaus(res, f);
else
nmod_poly_factor_berlekamp(res, f);
}
mp_limb_t
__nmod_poly_factor(nmod_poly_factor_t result,
const nmod_poly_t input, int algorithm)
{
nmod_poly_t monic_input;
nmod_poly_factor_t sqfree_factors, factors;
mp_limb_t leading_coeff;
slong i, len;
len = input->length;
if (len <= 1)
{
if (len == 0)
return 0;
else
return input->coeffs[0];
}
leading_coeff = *nmod_poly_lead(input);
nmod_poly_init_preinv(monic_input, input->mod.n, input->mod.ninv);
nmod_poly_make_monic(monic_input, input);
if (len == 2)
{
nmod_poly_factor_insert(result, monic_input, 1);
nmod_poly_clear(monic_input);
return input->coeffs[1];
}
nmod_poly_factor_init(sqfree_factors);
nmod_poly_factor_squarefree(sqfree_factors, monic_input);
nmod_poly_clear(monic_input);
/* Run CZ on each of the square-free factors */
for (i = 0; i < sqfree_factors->num; i++)
{
nmod_poly_factor_init(factors);
__nmod_poly_factor1(factors, sqfree_factors->p + i, algorithm);
nmod_poly_factor_pow(factors, sqfree_factors->exp[i]);
nmod_poly_factor_concat(result, factors);
nmod_poly_factor_clear(factors);
}
nmod_poly_factor_clear(sqfree_factors);
return leading_coeff;
}
mp_limb_t
__nmod_poly_factor_deflation(nmod_poly_factor_t result,
const nmod_poly_t input, int algorithm)
{
slong i;
ulong deflation;
if (input->length <= 1)
{
if (input->length == 0)
return 0;
else
return input->coeffs[0];
}
deflation = nmod_poly_deflation(input);
if (deflation == 1)
{
return __nmod_poly_factor(result, input, algorithm);
}
else
{
nmod_poly_factor_t def_res;
nmod_poly_t def;
mp_limb_t leading_coeff;
nmod_poly_init_preinv(def, input->mod.n, input->mod.ninv);
nmod_poly_deflate(def, input, deflation);
nmod_poly_factor_init(def_res);
leading_coeff = __nmod_poly_factor(def_res, def, algorithm);
nmod_poly_clear(def);
for (i = 0; i < def_res->num; i++)
{
/* Inflate */
nmod_poly_t pol;
nmod_poly_init_preinv(pol, input->mod.n, input->mod.ninv);
nmod_poly_inflate(pol, def_res->p + i, deflation);
/* Factor inflation */
if (def_res->exp[i] == 1)
__nmod_poly_factor(result, pol, algorithm);
else
{
nmod_poly_factor_t t;
nmod_poly_factor_init(t);
__nmod_poly_factor(t, pol, algorithm);
nmod_poly_factor_pow(t, def_res->exp[i]);
nmod_poly_factor_concat(result, t);
nmod_poly_factor_clear(t);
}
nmod_poly_clear(pol);
}
nmod_poly_factor_clear(def_res);
return leading_coeff;
}
}
mp_limb_t
nmod_poly_factor_with_berlekamp(nmod_poly_factor_t result,
const nmod_poly_t input)
{
return __nmod_poly_factor_deflation(result, input, BERLEKAMP);
}
mp_limb_t
nmod_poly_factor_with_cantor_zassenhaus(nmod_poly_factor_t result,
const nmod_poly_t input)
{
return __nmod_poly_factor_deflation(result, input, ZASSENHAUS);
}
mp_limb_t
nmod_poly_factor_with_kaltofen_shoup(nmod_poly_factor_t result,
const nmod_poly_t input)
{
return __nmod_poly_factor_deflation(result, input, KALTOFEN);
}
mp_limb_t
nmod_poly_factor(nmod_poly_factor_t result, const nmod_poly_t input)
{
mp_limb_t p = input->mod.n;
unsigned int bits = FLINT_BIT_COUNT (p);
slong n = nmod_poly_degree(input);
if (n < 10 + 50 / bits)
return __nmod_poly_factor_deflation(result, input, ZASSENHAUS);
else
return __nmod_poly_factor_deflation(result, input, KALTOFEN);
}
|