File: multi_crt.cpp

package info (click to toggle)
flint 2.5.2-19
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 30,308 kB
  • sloc: ansic: 289,367; cpp: 11,210; python: 1,280; sh: 649; makefile: 283
file content (73 lines) | stat: -rw-r--r-- 2,209 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
/*=============================================================================

    This file is part of FLINT.

    FLINT is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    FLINT is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with FLINT; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA

=============================================================================*/
/******************************************************************************

    Copyright (C) 2011 Fredrik Johansson
    Copyright (C) 2013 Tom Bachmann (C++ adaptation)

******************************************************************************/

/*
    Demo FLINT program for balanced multimodular reduction and
    reconstruction using the Chinese Remainder Theorem.
*/

#include <iostream>
#include <vector>
#include "fmpzxx.h"
#include "ulong_extras.h"

using namespace flint;

int main(int argc, char* argv[])
{
    if (argc != 3)
    {
        std::cerr << "Syntax: crt <integer> <num_primes>\n";
        return 1;
    }

    slong num_primes = atoi(argv[2]);

    if (num_primes < 1)
    {
        std::cerr << "Requires num_primes >= 1\n";
        return 2;
    }

    fmpzxx x(argv[1]);

    std::vector<mp_limb_t> primes(num_primes), residues(num_primes);
    primes[0] = 2;
    for (unsigned i = 1; i < num_primes; i++)
        primes[i] = n_nextprime(primes[i-1], 0);

    fmpz_combxx comb(primes);
    multi_mod(residues, x, comb);

    for (unsigned i = 0; i < num_primes; i++)
        std::cout << "residue mod " << primes[i]
                  << " = " << residues[i] << '\n';

    std::cout << "reconstruction = " << multi_CRT(residues, comb, true)
              << '\n';

    return 0;
}