File: ll_knuth_schroeppel.c

package info (click to toggle)
flint 2.5.2-19
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 30,308 kB
  • sloc: ansic: 289,367; cpp: 11,210; python: 1,280; sh: 649; makefile: 283
file content (141 lines) | stat: -rw-r--r-- 4,708 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
/*=============================================================================

    This file is part of FLINT.

    FLINT is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    FLINT is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with FLINT; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA

=============================================================================*/
/******************************************************************************

    Copyright (C) 2006, 2011 William Hart

******************************************************************************/

#include <stdio.h>
#include <gmp.h>
#include <math.h>
#include "flint.h"
#include "ulong_extras.h"
#include "longlong.h"
#include "qsieve.h"

/* Array of possible Knuth-Schroeppel multipliers */
static const mp_limb_t multipliers[] = {1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 
                                      17, 19, 21, 22, 23, 26, 29, 30, 31, 
                                      33, 34, 35, 37, 38, 41, 42, 43, 47};

/* Number of possible Knuth-Schroeppel multipliers */
#define KS_MULTIPLIERS (sizeof(multipliers)/sizeof(mp_limb_t))

/*
   Try to compute a multiplier k such that there are a lot of small primes
   which are quadratic residues modulo kn. If a small weight of n is found
   during this process it is returned.
*/
mp_limb_t qsieve_ll_knuth_schroeppel(qs_t qs_inf)
{
    float weights[KS_MULTIPLIERS]; /* array of Knuth-Schroeppel weights */
    float best_weight = -10.0f; /* best weight so far */
    
    ulong i;
    ulong num_primes, max; 
    float logpdivp;
    mp_limb_t nmod8, mod8, p, nmod, pinv, mult;
    int kron, jac;

    if ((qs_inf->lo & 1) == 0) /* check 2 is not a factor */
        return 2; 

    /* initialise weights for each multiplier k depending on kn mod 8 */
    nmod8 = qs_inf->lo % 8; /* n modulo 8 */
    
    for (i = 0; i < KS_MULTIPLIERS; i++)
    {
       mod8 = ((nmod8*multipliers[i]) % 8); /* kn modulo 8 */
       weights[i] = 0.34657359; /* ln2/2 */
       if (mod8 == 1) weights[i] *= 4.0;   
       if (mod8 == 5) weights[i] *= 2.0;   
       weights[i] -= (log((float) multipliers[i]) / 2.0);
    }
    
    /* 
        maximum number of primes to try 
        may not exceed number of factor base primes (recall k and 2 are factor base primes)
    */
    max = FLINT_MIN(qs_inf->ks_primes, qs_inf->num_primes - 2);

#if QS_DEBUG 
    flint_printf("Checking %wd Knuth-Schroeppel primes\n", max);
#endif

    p = 3;
    for (num_primes = 0; num_primes < max; num_primes++)
    {
        pinv = n_preinvert_limb(p); /* compute precomputed inverse */

        logpdivp = log((float) p) / (float) p; /* log p / p */

        nmod = n_ll_mod_preinv(qs_inf->hi, qs_inf->lo, p, pinv); 
        if (nmod == 0) return p; /* we found a small factor */

        kron = 1; /* n mod p is even, not handled by n_jacobi */
        while ((nmod % 2) == 0) 
        {
            if ((p % 8) == 3 || (p % 8) == 5) kron *= -1;
            nmod /= 2;
        }
        
        kron *= n_jacobi(nmod, p); 
        for (i = 0; i < KS_MULTIPLIERS; i++)
        {
            mult = multipliers[i];
            if (mult >= p)
                mult = n_mod2_preinv(mult, p, pinv); /* k mod p */    

            if (mult == 0) weights[i] += logpdivp; /* kn == 0 mod p */
            else
            {
                jac = 1;
                while ((mult % 2) == 0) /* k mod p is even, not handled by n_jacobi */
                {
                    if ((p % 8) == 3 || (p % 8) == 5) jac *= -1;
                    mult /= 2;
                }
                
                if (kron*jac*n_jacobi(mult, p) == 1) /* kn is a square mod p */
                   weights[i] += 2.0*logpdivp;
            }
        }
          
        p = n_nextprime(p, 0);
    }
    
    /* search for the multiplier with the best weight and set qs_inf->k */
    for (i = 0; i < KS_MULTIPLIERS; i++)
    {
        if (weights[i] > best_weight)
        { 
            best_weight = weights[i];
            qs_inf->k = multipliers[i];
        }
    } 

#if QS_DEBUG 
    flint_printf("Using multiplier %wd\n", qs_inf->k);
#endif

    return 0; /* we didn't find any small factors */
}