1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
|
.. _acb-hypgeom:
**acb_hypgeom.h** -- hypergeometric functions of complex variables
==================================================================================
The generalized hypergeometric function is formally defined by
.. math::
{}_pF_q(a_1,\ldots,a_p;b_1,\ldots,b_q;z) =
\sum_{k=0}^\infty \frac{(a_1)_k\dots(a_p)_k}{(b_1)_k\dots(b_q)_k} \frac {z^k} {k!}.
It can be interpreted using analytic continuation or regularization
when the sum does not converge.
In a looser sense, we understand "hypergeometric functions" to be
linear combinations of generalized hypergeometric functions
with prefactors that are products of exponentials, powers, and gamma functions.
Rising factorials
-------------------------------------------------------------------------------
.. function:: void acb_hypgeom_rising_ui_forward(acb_t res, const acb_t x, ulong n, slong prec)
void acb_hypgeom_rising_ui_bs(acb_t res, const acb_t x, ulong n, slong prec)
void acb_hypgeom_rising_ui_rs(acb_t res, const acb_t x, ulong n, ulong m, slong prec)
void acb_hypgeom_rising_ui_rec(acb_t res, const acb_t x, ulong n, slong prec)
void acb_hypgeom_rising_ui(acb_t res, const acb_t x, ulong n, slong prec)
void acb_hypgeom_rising(acb_t res, const acb_t x, const acb_t n, slong prec)
Computes the rising factorial `(x)_n`.
The *forward* version uses the forward recurrence.
The *bs* version uses binary splitting.
The *rs* version uses rectangular splitting. It takes an extra tuning
parameter *m* which can be set to zero to choose automatically.
The *rec* version chooses an algorithm automatically, avoiding
use of the gamma function (so that it can be used in the computation
of the gamma function).
The default versions (*rising_ui* and *rising_ui*) choose an algorithm
automatically and may additionally fall back on the gamma function.
.. function:: void acb_hypgeom_rising_ui_jet_powsum(acb_ptr res, const acb_t x, ulong n, slong len, slong prec)
void acb_hypgeom_rising_ui_jet_bs(acb_ptr res, const acb_t x, ulong n, slong len, slong prec)
void acb_hypgeom_rising_ui_jet_rs(acb_ptr res, const acb_t x, ulong n, ulong m, slong len, slong prec)
void acb_hypgeom_rising_ui_jet(acb_ptr res, const acb_t x, ulong n, slong len, slong prec)
Computes the jet of the rising factorial `(x)_n`, truncated to length *len*.
In other words, constructs the polynomial `(X + x)_n \in \mathbb{R}[X]`,
truncated if `\operatorname{len} < n + 1` (and zero-extended
if `\operatorname{len} > n + 1`).
The *powsum* version computes the sequence of powers of *x* and forms integral
linear combinations of these.
The *bs* version uses binary splitting.
The *rs* version uses rectangular splitting. It takes an extra tuning
parameter *m* which can be set to zero to choose automatically.
The default version chooses an algorithm automatically.
.. function:: void acb_hypgeom_log_rising_ui(acb_ptr res, const acb_t x, ulong n, slong prec)
Computes the log-rising factorial `\log \, (x)_n = \sum_{k=0}^{n-1} \log(x+k)`.
This first computes the ordinary rising factorial and then determines
the branch correction `2 \pi i m` with respect to the principal
logarithm. The correction is computed using Hare's algorithm in
floating-point arithmetic if this is safe; otherwise,
a direct computation of `\sum_{k=0}^{n-1} \arg(x+k)` is used as a fallback.
.. function:: void acb_hypgeom_log_rising_ui_jet(acb_ptr res, const acb_t x, ulong n, slong len, slong prec)
Computes the jet of the log-rising factorial `\log \, (x)_n`,
truncated to length *len*.
Gamma function
-------------------------------------------------------------------------------
.. function:: void acb_hypgeom_gamma_stirling_sum_horner(acb_t s, const acb_t z, slong N, slong prec)
void acb_hypgeom_gamma_stirling_sum_improved(acb_t s, const acb_t z, slong N, slong K, slong prec)
Sets *res* to the final sum in the Stirling series for the gamma function
truncated before the term with index *N*, i.e. computes
`\sum_{n=1}^{N-1} B_{2n} / (2n(2n-1) z^{2n-1})`.
The *horner* version uses Horner scheme with gradual precision adjustments.
The *improved* version uses rectangular splitting for the low-index
terms and reexpands the high-index terms as hypergeometric polynomials,
using a splitting parameter *K* (which can be set to 0 to use a default
value).
.. function:: void acb_hypgeom_gamma_stirling(acb_t res, const acb_t x, int reciprocal, slong prec)
Sets *res* to the gamma function of *x* computed using the Stirling
series together with argument reduction. If *reciprocal* is set,
the reciprocal gamma function is computed instead.
.. function:: int acb_hypgeom_gamma_taylor(acb_t res, const acb_t x, int reciprocal, slong prec)
Attempts to compute the gamma function of *x* using Taylor series
together with argument reduction. This is only supported if *x* and *prec*
are both small enough. If successful, returns 1; otherwise, does nothing
and returns 0. If *reciprocal* is set, the reciprocal gamma function is
computed instead.
.. function:: void acb_hypgeom_gamma(acb_t res, const acb_t x, slong prec)
Sets *res* to the gamma function of *x* computed using a default
algorithm choice.
.. function:: void acb_hypgeom_rgamma(acb_t res, const acb_t x, slong prec)
Sets *res* to the reciprocal gamma function of *x* computed using a default
algorithm choice.
.. function:: void acb_hypgeom_lgamma(acb_t res, const acb_t x, slong prec)
Sets *res* to the principal branch of the log-gamma function of *x*
computed using a default algorithm choice.
Convergent series
-------------------------------------------------------------------------------
In this section, we define
.. math::
T(k) = \frac{\prod_{i=0}^{p-1} (a_i)_k}{\prod_{i=0}^{q-1} (b_i)_k} z^k
and
.. math::
{}_pf_{q}(a_0,\ldots,a_{p-1}; b_0 \ldots b_{q-1}; z) = {}_{p+1}F_{q}(a_0,\ldots,a_{p-1},1; b_0 \ldots b_{q-1}; z) = \sum_{k=0}^{\infty} T(k)
For the conventional generalized hypergeometric function
`{}_pF_{q}`, compute `{}_pf_{q+1}` with the explicit parameter `b_q = 1`,
or remove a 1 from the `a_i` parameters if there is one.
.. function:: void acb_hypgeom_pfq_bound_factor(mag_t C, acb_srcptr a, slong p, acb_srcptr b, slong q, const acb_t z, ulong n)
Computes a factor *C* such that
`\left|\sum_{k=n}^{\infty} T(k)\right| \le C |T(n)|`.
See :ref:`algorithms_hypergeometric_convergent`.
As currently implemented, the bound becomes infinite when `n` is
too small, even if the series converges.
.. function:: slong acb_hypgeom_pfq_choose_n(acb_srcptr a, slong p, acb_srcptr b, slong q, const acb_t z, slong prec)
Heuristically attempts to choose a number of terms *n* to
sum of a hypergeometric series at a working precision of *prec* bits.
Uses double precision arithmetic internally. As currently implemented,
it can fail to produce a good result if the parameters are extremely
large or extremely close to nonpositive integers.
Numerical cancellation is assumed to be significant, so truncation
is done when the current term is *prec* bits
smaller than the largest encountered term.
This function will also attempt to pick a reasonable
truncation point for divergent series.
.. function:: void acb_hypgeom_pfq_sum_forward(acb_t s, acb_t t, acb_srcptr a, slong p, acb_srcptr b, slong q, const acb_t z, slong n, slong prec)
.. function:: void acb_hypgeom_pfq_sum_rs(acb_t s, acb_t t, acb_srcptr a, slong p, acb_srcptr b, slong q, const acb_t z, slong n, slong prec)
.. function:: void acb_hypgeom_pfq_sum_bs(acb_t s, acb_t t, acb_srcptr a, slong p, acb_srcptr b, slong q, const acb_t z, slong n, slong prec)
.. function:: void acb_hypgeom_pfq_sum_fme(acb_t s, acb_t t, acb_srcptr a, slong p, acb_srcptr b, slong q, const acb_t z, slong n, slong prec)
.. function:: void acb_hypgeom_pfq_sum(acb_t s, acb_t t, acb_srcptr a, slong p, acb_srcptr b, slong q, const acb_t z, slong n, slong prec)
Computes `s = \sum_{k=0}^{n-1} T(k)` and `t = T(n)`.
Does not allow aliasing between input and output variables.
We require `n \ge 0`.
The *forward* version computes the sum using forward
recurrence.
The *bs* version computes the sum using binary splitting.
The *rs* version computes the sum in reverse order
using rectangular splitting. It only computes a
magnitude bound for the value of *t*.
The *fme* version uses fast multipoint evaluation.
The default version automatically chooses an algorithm
depending on the inputs.
.. function:: void acb_hypgeom_pfq_sum_bs_invz(acb_t s, acb_t t, acb_srcptr a, slong p, acb_srcptr b, slong q, const acb_t w, slong n, slong prec)
.. function:: void acb_hypgeom_pfq_sum_invz(acb_t s, acb_t t, acb_srcptr a, slong p, acb_srcptr b, slong q, const acb_t z, const acb_t w, slong n, slong prec)
Like :func:`acb_hypgeom_pfq_sum`, but taking advantage of
`w = 1/z` possibly having few bits.
.. function:: void acb_hypgeom_pfq_direct(acb_t res, acb_srcptr a, slong p, acb_srcptr b, slong q, const acb_t z, slong n, slong prec)
Computes
.. math::
{}_pf_{q}(z)
= \sum_{k=0}^{\infty} T(k)
= \sum_{k=0}^{n-1} T(k) + \varepsilon
directly from the defining series, including a rigorous bound for
the truncation error `\varepsilon` in the output.
If `n < 0`, this function chooses a number of terms automatically
using :func:`acb_hypgeom_pfq_choose_n`.
.. function:: void acb_hypgeom_pfq_series_sum_forward(acb_poly_t s, acb_poly_t t, const acb_poly_struct * a, slong p, const acb_poly_struct * b, slong q, const acb_poly_t z, int regularized, slong n, slong len, slong prec)
.. function:: void acb_hypgeom_pfq_series_sum_bs(acb_poly_t s, acb_poly_t t, const acb_poly_struct * a, slong p, const acb_poly_struct * b, slong q, const acb_poly_t z, int regularized, slong n, slong len, slong prec)
.. function:: void acb_hypgeom_pfq_series_sum_rs(acb_poly_t s, acb_poly_t t, const acb_poly_struct * a, slong p, const acb_poly_struct * b, slong q, const acb_poly_t z, int regularized, slong n, slong len, slong prec)
.. function:: void acb_hypgeom_pfq_series_sum(acb_poly_t s, acb_poly_t t, const acb_poly_struct * a, slong p, const acb_poly_struct * b, slong q, const acb_poly_t z, int regularized, slong n, slong len, slong prec)
Computes `s = \sum_{k=0}^{n-1} T(k)` and `t = T(n)` given parameters
and argument that are power series.
Does not allow aliasing between input and output variables.
We require `n \ge 0` and that *len* is positive.
If *regularized* is set, the regularized sum is computed, avoiding
division by zero at the poles of the gamma function.
The *forward*, *bs*, *rs* and default versions use forward recurrence,
binary splitting, rectangular splitting, and an automatic algorithm
choice.
.. function:: void acb_hypgeom_pfq_series_direct(acb_poly_t res, const acb_poly_struct * a, slong p, const acb_poly_struct * b, slong q, const acb_poly_t z, int regularized, slong n, slong len, slong prec)
Computes `{}_pf_{q}(z)` directly using the defining series, given
parameters and argument that are power series.
The result is a power series of length *len*.
We require that *len* is positive.
An error bound is computed automatically as a function of the number
of terms *n*. If `n < 0`, the number of terms is chosen
automatically.
If *regularized* is set, the regularized hypergeometric function
is computed instead.
Asymptotic series
-------------------------------------------------------------------------------
`U(a,b,z)` is the confluent hypergeometric function of the second
kind with the principal branch cut, and `U^{*} = z^a U(a,b,z)`.
For details about how error bounds are computed,
see :ref:`algorithms_hypergeometric_asymptotic_confluent`.
.. function:: void acb_hypgeom_u_asymp(acb_t res, const acb_t a, const acb_t b, const acb_t z, slong n, slong prec)
Sets *res* to `U^{*}(a,b,z)` computed using *n* terms of the asymptotic series,
with a rigorous bound for the error included in the output.
We require `n \ge 0`.
.. function:: int acb_hypgeom_u_use_asymp(const acb_t z, slong prec)
Heuristically determines whether the asymptotic series can be used
to evaluate `U(a,b,z)` to *prec* accurate bits (assuming that *a* and *b*
are small).
Generalized hypergeometric function
-------------------------------------------------------------------------------
.. function:: void acb_hypgeom_pfq(acb_t res, acb_srcptr a, slong p, acb_srcptr b, slong q, const acb_t z, int regularized, slong prec)
Computes the generalized hypergeometric function `{}_pF_{q}(z)`,
or the regularized version if *regularized* is set.
This function automatically delegates to a specialized implementation
when the order (*p*, *q*) is one of (0,0), (1,0), (0,1), (1,1), (2,1).
Otherwise, it falls back to direct summation.
While this is a top-level function meant to take care of special cases
automatically, it does not generally perform the optimization
of deleting parameters that appear in both *a* and *b*. This can be
done ahead of time by the user in applications where duplicate
parameters are likely to occur.
Confluent hypergeometric functions
-------------------------------------------------------------------------------
.. function:: void acb_hypgeom_u_1f1_series(acb_poly_t res, const acb_poly_t a, const acb_poly_t b, const acb_poly_t z, slong len, slong prec)
Computes `U(a,b,z)` as a power series truncated to length *len*,
given `a, b, z \in \mathbb{C}[[x]]`.
If `b[0] \in \mathbb{Z}`, it computes one extra derivative and removes
the singularity (it is then assumed that `b[1] \ne 0`).
As currently implemented, the output is indeterminate if `b` is nonexact
and contains an integer.
.. function:: void acb_hypgeom_u_1f1(acb_t res, const acb_t a, const acb_t b, const acb_t z, slong prec)
Computes `U(a,b,z)` as a sum of two convergent hypergeometric series.
If `b \in \mathbb{Z}`, it computes
the limit value via :func:`acb_hypgeom_u_1f1_series`.
As currently implemented, the output is indeterminate if `b` is nonexact
and contains an integer.
.. function:: void acb_hypgeom_u(acb_t res, const acb_t a, const acb_t b, const acb_t z, slong prec)
Computes `U(a,b,z)` using an automatic algorithm choice. The
function :func:`acb_hypgeom_u_asymp` is used
if `a` or `a-b+1` is a nonpositive integer (in which
case the asymptotic series terminates), or if *z* is sufficiently large.
Otherwise :func:`acb_hypgeom_u_1f1` is used.
.. function:: void acb_hypgeom_m_asymp(acb_t res, const acb_t a, const acb_t b, const acb_t z, int regularized, slong prec)
.. function:: void acb_hypgeom_m_1f1(acb_t res, const acb_t a, const acb_t b, const acb_t z, int regularized, slong prec)
.. function:: void acb_hypgeom_m(acb_t res, const acb_t a, const acb_t b, const acb_t z, int regularized, slong prec)
Computes the confluent hypergeometric function
`M(a,b,z) = {}_1F_1(a,b,z)`, or
`\mathbf{M}(a,b,z) = \frac{1}{\Gamma(b)} {}_1F_1(a,b,z)` if *regularized*
is set.
.. function:: void acb_hypgeom_1f1(acb_t res, const acb_t a, const acb_t b, const acb_t z, int regularized, slong prec)
Alias for :func:`acb_hypgeom_m`.
.. function:: void acb_hypgeom_0f1_asymp(acb_t res, const acb_t a, const acb_t z, int regularized, slong prec)
.. function:: void acb_hypgeom_0f1_direct(acb_t res, const acb_t a, const acb_t z, int regularized, slong prec)
.. function:: void acb_hypgeom_0f1(acb_t res, const acb_t a, const acb_t z, int regularized, slong prec)
Computes the confluent hypergeometric function
`{}_0F_1(a,z)`, or `\frac{1}{\Gamma(a)} {}_0F_1(a,z)` if *regularized*
is set, using asymptotic expansions, direct summation,
or an automatic algorithm choice.
The *asymp* version uses the asymptotic expansions of Bessel
functions, together with the connection formulas
.. math::
\frac{{}_0F_1(a,z)}{\Gamma(a)} = (-z)^{(1-a)/2} J_{a-1}(2 \sqrt{-z}) =
z^{(1-a)/2} I_{a-1}(2 \sqrt{z}).
The Bessel-*J* function is used in the left half-plane and the
Bessel-*I* function is used in the right half-plane, to avoid loss
of accuracy due to evaluating the square root on the branch cut.
Error functions and Fresnel integrals
-------------------------------------------------------------------------------
.. function:: void acb_hypgeom_erf_propagated_error(mag_t re, mag_t im, const acb_t z)
Sets *re* and *im* to upper bounds for the error in the real and imaginary
part resulting from approximating the error function of *z* by
the error function evaluated at the midpoint of *z*. Uses
the first derivative.
.. function:: void acb_hypgeom_erf_1f1a(acb_t res, const acb_t z, slong prec)
.. function:: void acb_hypgeom_erf_1f1b(acb_t res, const acb_t z, slong prec)
.. function:: void acb_hypgeom_erf_asymp(acb_t res, const acb_t z, int complementary, slong prec, slong prec2)
Computes the error function respectively using
.. math::
\operatorname{erf}(z) &= \frac{2z}{\sqrt{\pi}}
{}_1F_1(\tfrac{1}{2}, \tfrac{3}{2}, -z^2)
\operatorname{erf}(z) &= \frac{2z e^{-z^2}}{\sqrt{\pi}}
{}_1F_1(1, \tfrac{3}{2}, z^2)
\operatorname{erf}(z) &= \frac{z}{\sqrt{z^2}}
\left(1 - \frac{e^{-z^2}}{\sqrt{\pi}}
U(\tfrac{1}{2}, \tfrac{1}{2}, z^2)\right) =
\frac{z}{\sqrt{z^2}} - \frac{e^{-z^2}}{z \sqrt{\pi}}
U^{*}(\tfrac{1}{2}, \tfrac{1}{2}, z^2).
The *asymp* version takes a second precision to use for the *U* term.
It also takes an extra flag *complementary*, computing the complementary
error function if set.
.. function:: void acb_hypgeom_erf(acb_t res, const acb_t z, slong prec)
Computes the error function using an automatic algorithm choice.
If *z* is too small to use the asymptotic expansion, a working precision
sufficient to circumvent cancellation in the hypergeometric series is
determined automatically, and a bound for the propagated error is
computed with :func:`acb_hypgeom_erf_propagated_error`.
.. function:: void _acb_hypgeom_erf_series(acb_ptr res, acb_srcptr z, slong zlen, slong len, slong prec)
.. function:: void acb_hypgeom_erf_series(acb_poly_t res, const acb_poly_t z, slong len, slong prec)
Computes the error function of the power series *z*,
truncated to length *len*.
.. function:: void acb_hypgeom_erfc(acb_t res, const acb_t z, slong prec)
Computes the complementary error function
`\operatorname{erfc}(z) = 1 - \operatorname{erf}(z)`.
This function avoids catastrophic cancellation for large positive *z*.
.. function:: void _acb_hypgeom_erfc_series(acb_ptr res, acb_srcptr z, slong zlen, slong len, slong prec)
.. function:: void acb_hypgeom_erfc_series(acb_poly_t res, const acb_poly_t z, slong len, slong prec)
Computes the complementary error function of the power series *z*,
truncated to length *len*.
.. function:: void acb_hypgeom_erfi(acb_t res, const acb_t z, slong prec)
Computes the imaginary error function
`\operatorname{erfi}(z) = -i\operatorname{erf}(iz)`. This is a trivial wrapper
of :func:`acb_hypgeom_erf`.
.. function:: void _acb_hypgeom_erfi_series(acb_ptr res, acb_srcptr z, slong zlen, slong len, slong prec)
.. function:: void acb_hypgeom_erfi_series(acb_poly_t res, const acb_poly_t z, slong len, slong prec)
Computes the imaginary error function of the power series *z*,
truncated to length *len*.
.. function:: void acb_hypgeom_fresnel(acb_t res1, acb_t res2, const acb_t z, int normalized, slong prec)
Sets *res1* to the Fresnel sine integral `S(z)` and *res2* to
the Fresnel cosine integral `C(z)`. Optionally, just a single function
can be computed by passing *NULL* as the other output variable.
The definition `S(z) = \int_0^z \sin(t^2) dt` is used if *normalized* is 0,
and `S(z) = \int_0^z \sin(\tfrac{1}{2} \pi t^2) dt` is used if
*normalized* is 1 (the latter is the Abramowitz & Stegun convention).
`C(z)` is defined analogously.
.. function:: void _acb_hypgeom_fresnel_series(acb_ptr res1, acb_ptr res2, acb_srcptr z, slong zlen, int normalized, slong len, slong prec)
.. function:: void acb_hypgeom_fresnel_series(acb_poly_t res1, acb_poly_t res2, const acb_poly_t z, int normalized, slong len, slong prec)
Sets *res1* to the Fresnel sine integral and *res2* to the Fresnel
cosine integral of the power series *z*, truncated to length *len*.
Optionally, just a single function can be computed by passing *NULL*
as the other output variable.
Bessel functions
-------------------------------------------------------------------------------
.. function:: void acb_hypgeom_bessel_j_deriv_bound(mag_t res, const acb_t nu, const acb_t z, ulong d)
Sets *res* to a bound, possibly crude, for `|J^{(d)}_{\nu}(z)|`.
Currently only specialized for small integer `\nu` and small `d`.
.. function:: void acb_hypgeom_bessel_j_asymp(acb_t res, const acb_t nu, const acb_t z, slong prec)
Computes the Bessel function of the first kind
via :func:`acb_hypgeom_u_asymp`.
For all complex `\nu, z`, we have
.. math::
J_{\nu}(z) = \frac{z^{\nu}}{2^{\nu} e^{iz} \Gamma(\nu+1)}
{}_1F_1(\nu+\tfrac{1}{2}, 2\nu+1, 2iz) = A_{+} B_{+} + A_{-} B_{-}
where
.. math::
A_{\pm} = z^{\nu} (z^2)^{-\tfrac{1}{2}-\nu} (\mp i z)^{\tfrac{1}{2}+\nu} (2 \pi)^{-1/2} = (\pm iz)^{-1/2-\nu} z^{\nu} (2 \pi)^{-1/2}
.. math::
B_{\pm} = e^{\pm i z} U^{*}(\nu+\tfrac{1}{2}, 2\nu+1, \mp 2iz).
Nicer representations of the factors `A_{\pm}` can be given depending conditionally
on the parameters. If `\nu + \tfrac{1}{2} = n \in \mathbb{Z}`, we have
`A_{\pm} = (\pm i)^{n} (2 \pi z)^{-1/2}`.
And if `\operatorname{Re}(z) > 0`, we have `A_{\pm} = \exp(\mp i [(2\nu+1)/4] \pi) (2 \pi z)^{-1/2}`.
.. function:: void acb_hypgeom_bessel_j_0f1(acb_t res, const acb_t nu, const acb_t z, slong prec)
Computes the Bessel function of the first kind from
.. math::
J_{\nu}(z) = \frac{1}{\Gamma(\nu+1)} \left(\frac{z}{2}\right)^{\nu}
{}_0F_1\left(\nu+1, -\frac{z^2}{4}\right).
.. function:: void acb_hypgeom_bessel_j(acb_t res, const acb_t nu, const acb_t z, slong prec)
Computes the Bessel function of the first kind `J_{\nu}(z)` using
an automatic algorithm choice.
.. function:: void acb_hypgeom_bessel_y(acb_t res, const acb_t nu, const acb_t z, slong prec)
Computes the Bessel function of the second kind `Y_{\nu}(z)` from the
formula
.. math::
Y_{\nu}(z) = \frac{\cos(\nu \pi) J_{\nu}(z) - J_{-\nu}(z)}{\sin(\nu \pi)}
unless `\nu = n` is an integer in which case the limit value
.. math::
Y_n(z) = -\frac{2}{\pi} \left( i^n K_n(iz) +
\left[\log(iz)-\log(z)\right] J_n(z) \right)
is computed.
As currently implemented, the output is indeterminate if `\nu` is nonexact
and contains an integer.
.. function:: void acb_hypgeom_bessel_jy(acb_t res1, acb_t res2, const acb_t nu, const acb_t z, slong prec)
Sets *res1* to `J_{\nu}(z)` and *res2* to `Y_{\nu}(z)`, computed
simultaneously. From these values, the user can easily
construct the Bessel functions of the third kind (Hankel functions)
`H_{\nu}^{(1)}(z), H_{\nu}^{(2)}(z) = J_{\nu}(z) \pm i Y_{\nu}(z)`.
Modified Bessel functions
-------------------------------------------------------------------------------
.. function:: void acb_hypgeom_bessel_i_asymp(acb_t res, const acb_t nu, const acb_t z, int scaled, slong prec)
.. function:: void acb_hypgeom_bessel_i_0f1(acb_t res, const acb_t nu, const acb_t z, int scaled, slong prec)
.. function:: void acb_hypgeom_bessel_i(acb_t res, const acb_t nu, const acb_t z, slong prec)
.. function:: void acb_hypgeom_bessel_i_scaled(acb_t res, const acb_t nu, const acb_t z, slong prec)
Computes the modified Bessel function of the first kind
`I_{\nu}(z) = z^{\nu} (iz)^{-\nu} J_{\nu}(iz)` respectively using
asymptotic series (see :func:`acb_hypgeom_bessel_j_asymp`),
the convergent series
.. math::
I_{\nu}(z) = \frac{1}{\Gamma(\nu+1)} \left(\frac{z}{2}\right)^{\nu}
{}_0F_1\left(\nu+1, \frac{z^2}{4}\right),
or an automatic algorithm choice.
The *scaled* version computes the function `e^{-z} I_{\nu}(z)`. The *asymp*
and *0f1* functions implement both variants and allow choosing with a flag.
.. function:: void acb_hypgeom_bessel_k_asymp(acb_t res, const acb_t nu, const acb_t z, int scaled, slong prec)
Computes the modified Bessel function of the second kind via
via :func:`acb_hypgeom_u_asymp`. For all `\nu` and all `z \ne 0`, we have
.. math::
K_{\nu}(z) = \left(\frac{2z}{\pi}\right)^{-1/2} e^{-z}
U^{*}(\nu+\tfrac{1}{2}, 2\nu+1, 2z).
If *scaled* is set, computes the function `e^{z} K_{\nu}(z)`.
.. function:: void acb_hypgeom_bessel_k_0f1_series(acb_poly_t res, const acb_poly_t nu, const acb_poly_t z, int scaled, slong len, slong prec)
Computes the modified Bessel function of the second kind `K_{\nu}(z)`
as a power series truncated to length *len*,
given `\nu, z \in \mathbb{C}[[x]]`. Uses the formula
.. math::
K_{\nu}(z) = \frac{1}{2} \frac{\pi}{\sin(\pi \nu)} \left[
\left(\frac{z}{2}\right)^{-\nu}
{}_0{\widetilde F}_1\left(1-\nu, \frac{z^2}{4}\right)
-
\left(\frac{z}{2}\right)^{\nu}
{}_0{\widetilde F}_1\left(1+\nu, \frac{z^2}{4}\right)
\right].
If `\nu[0] \in \mathbb{Z}`, it computes one extra derivative and removes
the singularity (it is then assumed that `\nu[1] \ne 0`).
As currently implemented, the output is indeterminate if `\nu[0]` is nonexact
and contains an integer.
If *scaled* is set, computes the function `e^{z} K_{\nu}(z)`.
.. function:: void acb_hypgeom_bessel_k_0f1(acb_t res, const acb_t nu, const acb_t z, int scaled, slong prec)
Computes the modified Bessel function of the second kind from
.. math::
K_{\nu}(z) = \frac{1}{2} \left[
\left(\frac{z}{2}\right)^{-\nu}
\Gamma(\nu)
{}_0F_1\left(1-\nu, \frac{z^2}{4}\right)
-
\left(\frac{z}{2}\right)^{\nu}
\frac{\pi}{\nu \sin(\pi \nu) \Gamma(\nu)}
{}_0F_1\left(\nu+1, \frac{z^2}{4}\right)
\right]
if `\nu \notin \mathbb{Z}`. If `\nu \in \mathbb{Z}`, it computes
the limit value via :func:`acb_hypgeom_bessel_k_0f1_series`.
As currently implemented, the output is indeterminate if `\nu` is nonexact
and contains an integer.
If *scaled* is set, computes the function `e^{z} K_{\nu}(z)`.
.. function:: void acb_hypgeom_bessel_k(acb_t res, const acb_t nu, const acb_t z, slong prec)
Computes the modified Bessel function of the second kind `K_{\nu}(z)` using
an automatic algorithm choice.
.. function:: void acb_hypgeom_bessel_k_scaled(acb_t res, const acb_t nu, const acb_t z, slong prec)
Computes the function `e^{z} K_{\nu}(z)`.
Airy functions
-------------------------------------------------------------------------------
The Airy functions are linearly independent solutions of the
differential equation `y'' - zy = 0`. All solutions are entire functions.
The standard solutions are denoted `\operatorname{Ai}(z), \operatorname{Bi}(z)`.
For negative *z*, both functions are oscillatory. For positive *z*,
the first function decreases exponentially while the second increases
exponentially.
The Airy functions can be expressed in terms of Bessel functions of fractional
order, but this is inconvenient since such formulas
only hold piecewise (due to the Stokes phenomenon). Computation of the
Airy functions can also be optimized more than Bessel functions in general.
We therefore provide a dedicated interface for evaluating Airy functions.
The following methods optionally compute
`(\operatorname{Ai}(z), \operatorname{Ai}'(z), \operatorname{Bi}(z), \operatorname{Bi}'(z))`
simultaneously. Any of the four function values can be omitted by passing
*NULL* for the unwanted output variables, speeding up the evaluation.
.. function:: void acb_hypgeom_airy_direct(acb_t ai, acb_t ai_prime, acb_t bi, acb_t bi_prime, const acb_t z, slong n, slong prec)
Computes the Airy functions using direct series expansions truncated at *n* terms.
Error bounds are included in the output.
.. function:: void acb_hypgeom_airy_asymp(acb_t ai, acb_t ai_prime, acb_t bi, acb_t bi_prime, const acb_t z, slong n, slong prec)
Computes the Airy functions using asymptotic expansions truncated at *n* terms.
Error bounds are included in the output.
For details about how the error bounds are computed, see
:ref:`algorithms_hypergeometric_asymptotic_airy`.
.. function:: void acb_hypgeom_airy_bound(mag_t ai, mag_t ai_prime, mag_t bi, mag_t bi_prime, const acb_t z)
Computes bounds for the Airy functions using first-order asymptotic
expansions together with error bounds. This function uses some
shortcuts to make it slightly faster than calling
:func:`acb_hypgeom_airy_asymp` with `n = 1`.
.. function:: void acb_hypgeom_airy(acb_t ai, acb_t ai_prime, acb_t bi, acb_t bi_prime, const acb_t z, slong prec)
Computes Airy functions using an automatic algorithm choice.
We use :func:`acb_hypgeom_airy_asymp` whenever this gives full accuracy
and :func:`acb_hypgeom_airy_direct` otherwise.
In the latter case, we first use hardware double precision arithmetic to
determine an accurate estimate of the working precision needed
to compute the Airy functions accurately for given *z*. This estimate is
obtained by comparing the leading-order asymptotic estimate of the Airy
functions with the magnitude of the largest term in the power series.
The estimate is generic in the sense that it does not take into account
vanishing near the roots of the functions.
We subsequently evaluate the power series at the midpoint of *z* and
bound the propagated error using derivatives. Derivatives are
bounded using :func:`acb_hypgeom_airy_bound`.
.. function:: void acb_hypgeom_airy_jet(acb_ptr ai, acb_ptr bi, const acb_t z, slong len, slong prec)
Writes to *ai* and *bi* the respective Taylor expansions of the Airy functions
at the point *z*, truncated to length *len*.
Either of the outputs can be *NULL* to avoid computing that function.
The variable *z* is not allowed to be aliased with the outputs.
To simplify the implementation, this method does not compute the
series expansions of the primed versions directly; these are
easily obtained by computing one extra coefficient and differentiating
the output with :func:`_acb_poly_derivative`.
.. function:: void _acb_hypgeom_airy_series(acb_ptr ai, acb_ptr ai_prime, acb_ptr bi, acb_ptr bi_prime, acb_srcptr z, slong zlen, slong len, slong prec)
.. function:: void acb_hypgeom_airy_series(acb_poly_t ai, acb_poly_t ai_prime, acb_poly_t bi, acb_poly_t bi_prime, const acb_poly_t z, slong len, slong prec)
Computes the Airy functions evaluated at the power series *z*,
truncated to length *len*. As with the other Airy methods, any of the
outputs can be *NULL*.
Coulomb wave functions
-------------------------------------------------------------------------------
Coulomb wave functions are solutions of the Coulomb wave equation
.. math::
y'' + \left(1 - \frac{2 \eta}{z} - \frac{\ell(\ell+1)}{z^2}\right) y = 0
which is the radial Schrödinger equation for a charged particle in a
Coulomb potential `1/z`, where `\ell` is the orbital angular momentum and
`\eta` is the Sommerfeld parameter.
The standard solutions are named `F_{\ell}(\eta,z)` (regular
at the origin `z = 0`) and `G_{\ell}(\eta,z)` (irregular at the origin).
The irregular solutions
`H^{\pm}_{\ell}(\eta,z) = G_{\ell}(\eta,z) \pm i F_{\ell}(\eta,z)`
are also used.
Coulomb wave functions are special cases of confluent hypergeometric functions.
The normalization constants and connection formulas are discussed in
[DYF1999]_, [Gas2018]_, [Mic2007]_ and chapter 33 in [NIST2012]_.
In this implementation, we define the analytic continuations of all
the functions so that the branch cut with respect to *z* is placed on the
negative real axis. Precise definitions are given in
http://fungrim.org/topic/Coulomb_wave_functions/
The following methods optionally compute
`F_{\ell}(\eta,z), G_{\ell}(\eta,z), H^{+}_{\ell}(\eta,z), H^{-}_{\ell}(\eta,z)`
simultaneously. Any of the four function values can be omitted by passing
*NULL* for the unwanted output variables.
The redundant functions `H^{\pm}` are provided explicitly since taking
the linear combination of *F* and *G* suffers from cancellation in
parts of the complex plane.
.. function:: void acb_hypgeom_coulomb(acb_t F, acb_t G, acb_t Hpos, acb_t Hneg, const acb_t l, const acb_t eta, const acb_t z, slong prec)
Writes to *F*, *G*, *Hpos*, *Hneg* the values of the respective
Coulomb wave functions. Any of the outputs can be *NULL*.
.. function:: void acb_hypgeom_coulomb_jet(acb_ptr F, acb_ptr G, acb_ptr Hpos, acb_ptr Hneg, const acb_t l, const acb_t eta, const acb_t z, slong len, slong prec)
Writes to *F*, *G*, *Hpos*, *Hneg* the respective Taylor expansions of the
Coulomb wave functions at the point *z*, truncated to length *len*.
Any of the outputs can be *NULL*.
.. function:: void _acb_hypgeom_coulomb_series(acb_ptr F, acb_ptr G, acb_ptr Hpos, acb_ptr Hneg, const acb_t l, const acb_t eta, acb_srcptr z, slong zlen, slong len, slong prec)
.. function:: void acb_hypgeom_coulomb_series(acb_poly_t F, acb_poly_t G, acb_poly_t Hpos, acb_poly_t Hneg, const acb_t l, const acb_t eta, const acb_poly_t z, slong len, slong prec)
Computes the Coulomb wave functions evaluated at the power series *z*,
truncated to length *len*. Any of the outputs can be *NULL*.
Incomplete gamma and beta functions
-------------------------------------------------------------------------------
.. function:: void acb_hypgeom_gamma_upper_asymp(acb_t res, const acb_t s, const acb_t z, int regularized, slong prec)
.. function:: void acb_hypgeom_gamma_upper_1f1a(acb_t res, const acb_t s, const acb_t z, int regularized, slong prec)
.. function:: void acb_hypgeom_gamma_upper_1f1b(acb_t res, const acb_t s, const acb_t z, int regularized, slong prec)
.. function:: void acb_hypgeom_gamma_upper_singular(acb_t res, slong s, const acb_t z, int regularized, slong prec)
.. function:: void acb_hypgeom_gamma_upper(acb_t res, const acb_t s, const acb_t z, int regularized, slong prec)
If *regularized* is 0, computes the upper incomplete gamma function
`\Gamma(s,z)`.
If *regularized* is 1, computes the regularized upper incomplete
gamma function `Q(s,z) = \Gamma(s,z) / \Gamma(s)`.
If *regularized* is 2, computes the generalized exponential integral
`z^{-s} \Gamma(s,z) = E_{1-s}(z)` instead (this option is mainly
intended for internal use; :func:`acb_hypgeom_expint` is the intended
interface for computing the exponential integral).
The different methods respectively implement the formulas
.. math::
\Gamma(s,z) = e^{-z} U(1-s,1-s,z)
.. math::
\Gamma(s,z) = \Gamma(s) - \frac{z^s}{s} {}_1F_1(s, s+1, -z)
.. math::
\Gamma(s,z) = \Gamma(s) - \frac{z^s e^{-z}}{s} {}_1F_1(1, s+1, z)
.. math::
\Gamma(s,z) = \frac{(-1)^n}{n!} (\psi(n+1) - \log(z))
+ \frac{(-1)^n}{(n+1)!} z \, {}_2F_2(1,1,2,2+n,-z)
- z^{-n} \sum_{k=0}^{n-1} \frac{(-z)^k}{(k-n) k!},
\quad n = -s \in \mathbb{Z}_{\ge 0}
and an automatic algorithm choice. The automatic version also handles
other special input such as `z = 0` and `s = 1, 2, 3`.
The *singular* version evaluates the finite sum directly and therefore
assumes that *s* is not too large.
.. function:: void _acb_hypgeom_gamma_upper_series(acb_ptr res, const acb_t s, acb_srcptr z, slong zlen, int regularized, slong n, slong prec)
.. function:: void acb_hypgeom_gamma_upper_series(acb_poly_t res, const acb_t s, const acb_poly_t z, int regularized, slong n, slong prec)
Sets *res* to an upper incomplete gamma function where *s* is
a constant and *z* is a power series, truncated to length *n*.
The *regularized* argument has the same interpretation as in
:func:`acb_hypgeom_gamma_upper`.
.. function:: void acb_hypgeom_gamma_lower(acb_t res, const acb_t s, const acb_t z, int regularized, slong prec)
If *regularized* is 0, computes the lower incomplete gamma function
`\gamma(s,z) = \frac{z^s}{s} {}_1F_1(s, s+1, -z)`.
If *regularized* is 1, computes the regularized lower incomplete
gamma function `P(s,z) = \gamma(s,z) / \Gamma(s)`.
If *regularized* is 2, computes a further regularized lower incomplete
gamma function `\gamma^{*}(s,z) = z^{-s} P(s,z)`.
.. function:: void _acb_hypgeom_gamma_lower_series(acb_ptr res, const acb_t s, acb_srcptr z, slong zlen, int regularized, slong n, slong prec)
.. function:: void acb_hypgeom_gamma_lower_series(acb_poly_t res, const acb_t s, const acb_poly_t z, int regularized, slong n, slong prec)
Sets *res* to an lower incomplete gamma function where *s* is
a constant and *z* is a power series, truncated to length *n*.
The *regularized* argument has the same interpretation as in
:func:`acb_hypgeom_gamma_lower`.
.. function:: void acb_hypgeom_beta_lower(acb_t res, const acb_t a, const acb_t b, const acb_t z, int regularized, slong prec)
Computes the (lower) incomplete beta function, defined by
`B(a,b;z) = \int_0^z t^{a-1} (1-t)^{b-1}`,
optionally the regularized incomplete beta function
`I(a,b;z) = B(a,b;z) / B(a,b;1)`.
In general, the integral must be interpreted using analytic continuation.
The precise definitions for all parameter values are
.. math::
B(a,b;z) = \frac{z^a}{a} {}_2F_1(a, 1-b, a+1, z)
.. math::
I(a,b;z) = \frac{\Gamma(a+b)}{\Gamma(b)} z^a {}_2{\widetilde F}_1(a, 1-b, a+1, z).
Note that both functions with this definition are undefined
for nonpositive integer *a*, and *I* is undefined for nonpositive integer
`a + b`.
.. function:: void _acb_hypgeom_beta_lower_series(acb_ptr res, const acb_t a, const acb_t b, acb_srcptr z, slong zlen, int regularized, slong n, slong prec)
.. function:: void acb_hypgeom_beta_lower_series(acb_poly_t res, const acb_t a, const acb_t b, const acb_poly_t z, int regularized, slong n, slong prec)
Sets *res* to the lower incomplete beta function `B(a,b;z)` (optionally
the regularized version `I(a,b;z)`) where *a* and *b* are constants
and *z* is a power series, truncating the result to length *n*.
The underscore method requires positive lengths and does not support
aliasing.
Exponential and trigonometric integrals
-------------------------------------------------------------------------------
The branch cut conventions of the following functions match Mathematica.
.. function:: void acb_hypgeom_expint(acb_t res, const acb_t s, const acb_t z, slong prec)
Computes the generalized exponential integral `E_s(z)`. This is a
trivial wrapper of :func:`acb_hypgeom_gamma_upper`.
.. function:: void acb_hypgeom_ei_asymp(acb_t res, const acb_t z, slong prec)
.. function:: void acb_hypgeom_ei_2f2(acb_t res, const acb_t z, slong prec)
.. function:: void acb_hypgeom_ei(acb_t res, const acb_t z, slong prec)
Computes the exponential integral `\operatorname{Ei}(z)`, respectively
using
.. math::
\operatorname{Ei}(z) = -e^z U(1,1,-z) - \log(-z)
+ \frac{1}{2} \left(\log(z) - \log\left(\frac{1}{z}\right) \right)
.. math::
\operatorname{Ei}(z) = z {}_2F_2(1, 1; 2, 2; z) + \gamma
+ \frac{1}{2} \left(\log(z) - \log\left(\frac{1}{z}\right) \right)
and an automatic algorithm choice.
.. function:: void _acb_hypgeom_ei_series(acb_ptr res, acb_srcptr z, slong zlen, slong len, slong prec)
.. function:: void acb_hypgeom_ei_series(acb_poly_t res, const acb_poly_t z, slong len, slong prec)
Computes the exponential integral of the power series *z*,
truncated to length *len*.
.. function:: void acb_hypgeom_si_asymp(acb_t res, const acb_t z, slong prec)
.. function:: void acb_hypgeom_si_1f2(acb_t res, const acb_t z, slong prec)
.. function:: void acb_hypgeom_si(acb_t res, const acb_t z, slong prec)
Computes the sine integral `\operatorname{Si}(z)`, respectively
using
.. math::
\operatorname{Si}(z) = \frac{i}{2} \left[
e^{iz} U(1,1,-iz) - e^{-iz} U(1,1,iz) +
\log(-iz) - \log(iz) \right]
.. math::
\operatorname{Si}(z) = z {}_1F_2(\tfrac{1}{2}; \tfrac{3}{2}, \tfrac{3}{2}; -\tfrac{z^2}{4})
and an automatic algorithm choice.
.. function:: void _acb_hypgeom_si_series(acb_ptr res, acb_srcptr z, slong zlen, slong len, slong prec)
.. function:: void acb_hypgeom_si_series(acb_poly_t res, const acb_poly_t z, slong len, slong prec)
Computes the sine integral of the power series *z*,
truncated to length *len*.
.. function:: void acb_hypgeom_ci_asymp(acb_t res, const acb_t z, slong prec)
.. function:: void acb_hypgeom_ci_2f3(acb_t res, const acb_t z, slong prec)
.. function:: void acb_hypgeom_ci(acb_t res, const acb_t z, slong prec)
Computes the cosine integral `\operatorname{Ci}(z)`, respectively
using
.. math::
\operatorname{Ci}(z) = \log(z) - \frac{1}{2} \left[
e^{iz} U(1,1,-iz) + e^{-iz} U(1,1,iz) +
\log(-iz) + \log(iz) \right]
.. math::
\operatorname{Ci}(z) = -\tfrac{z^2}{4}
{}_2F_3(1, 1; 2, 2, \tfrac{3}{2}; -\tfrac{z^2}{4})
+ \log(z) + \gamma
and an automatic algorithm choice.
.. function:: void _acb_hypgeom_ci_series(acb_ptr res, acb_srcptr z, slong zlen, slong len, slong prec)
.. function:: void acb_hypgeom_ci_series(acb_poly_t res, const acb_poly_t z, slong len, slong prec)
Computes the cosine integral of the power series *z*,
truncated to length *len*.
.. function:: void acb_hypgeom_shi(acb_t res, const acb_t z, slong prec)
Computes the hyperbolic sine integral
`\operatorname{Shi}(z) = -i \operatorname{Si}(iz)`.
This is a trivial wrapper of :func:`acb_hypgeom_si`.
.. function:: void _acb_hypgeom_shi_series(acb_ptr res, acb_srcptr z, slong zlen, slong len, slong prec)
.. function:: void acb_hypgeom_shi_series(acb_poly_t res, const acb_poly_t z, slong len, slong prec)
Computes the hyperbolic sine integral of the power series *z*,
truncated to length *len*.
.. function:: void acb_hypgeom_chi_asymp(acb_t res, const acb_t z, slong prec)
.. function:: void acb_hypgeom_chi_2f3(acb_t res, const acb_t z, slong prec)
.. function:: void acb_hypgeom_chi(acb_t res, const acb_t z, slong prec)
Computes the hyperbolic cosine integral `\operatorname{Chi}(z)`, respectively
using
.. math::
\operatorname{Chi}(z) = -\frac{1}{2} \left[
e^{z} U(1,1,-z) + e^{-z} U(1,1,z) +
\log(-z) - \log(z) \right]
.. math::
\operatorname{Chi}(z) = \tfrac{z^2}{4}
{}_2F_3(1, 1; 2, 2, \tfrac{3}{2}; \tfrac{z^2}{4})
+ \log(z) + \gamma
and an automatic algorithm choice.
.. function:: void _acb_hypgeom_chi_series(acb_ptr res, acb_srcptr z, slong zlen, slong len, slong prec)
.. function:: void acb_hypgeom_chi_series(acb_poly_t res, const acb_poly_t z, slong len, slong prec)
Computes the hyperbolic cosine integral of the power series *z*,
truncated to length *len*.
.. function:: void acb_hypgeom_li(acb_t res, const acb_t z, int offset, slong prec)
If *offset* is zero, computes the logarithmic integral
`\operatorname{li}(z) = \operatorname{Ei}(\log(z))`.
If *offset* is nonzero, computes the offset logarithmic integral
`\operatorname{Li}(z) = \operatorname{li}(z) - \operatorname{li}(2)`.
.. function:: void _acb_hypgeom_li_series(acb_ptr res, acb_srcptr z, slong zlen, int offset, slong len, slong prec)
.. function:: void acb_hypgeom_li_series(acb_poly_t res, const acb_poly_t z, int offset, slong len, slong prec)
Computes the logarithmic integral (optionally the offset version)
of the power series *z*, truncated to length *len*.
Gauss hypergeometric function
-------------------------------------------------------------------------------
The following methods compute the Gauss hypergeometric function
.. math::
F(z) = {}_2F_1(a,b,c,z) = \sum_{k=0}^{\infty} \frac{(a)_k (b)_k}{(c)_k} \frac{z^k}{k!}
or the regularized version
`\operatorname{\mathbf{F}}(z) = \operatorname{\mathbf{F}}(a,b,c,z) = {}_2F_1(a,b,c,z) / \Gamma(c)`
if the flag *regularized* is set.
.. function:: void acb_hypgeom_2f1_continuation(acb_t res0, acb_t res1, const acb_t a, const acb_t b, const acb_t c, const acb_t z0, const acb_t z1, const acb_t f0, const acb_t f1, slong prec)
Given `F(z_0), F'(z_0)` in *f0*, *f1*, sets *res0* and *res1* to `F(z_1), F'(z_1)`
by integrating the hypergeometric differential equation along a straight-line path.
The evaluation points should be well-isolated from the singular points 0 and 1.
.. function:: void acb_hypgeom_2f1_series_direct(acb_poly_t res, const acb_poly_t a, const acb_poly_t b, const acb_poly_t c, const acb_poly_t z, int regularized, slong len, slong prec)
Computes `F(z)` of the given power series truncated to length *len*, using
direct summation of the hypergeometric series.
.. function:: void acb_hypgeom_2f1_direct(acb_t res, const acb_t a, const acb_t b, const acb_t c, const acb_t z, int regularized, slong prec)
Computes `F(z)` using direct summation of the hypergeometric series.
.. function:: void acb_hypgeom_2f1_transform(acb_t res, const acb_t a, const acb_t b, const acb_t c, const acb_t z, int flags, int which, slong prec)
.. function:: void acb_hypgeom_2f1_transform_limit(acb_t res, const acb_t a, const acb_t b, const acb_t c, const acb_t z, int regularized, int which, slong prec)
Computes `F(z)` using an argument transformation determined by the flag *which*.
Legal values are 1 for `z/(z-1)`,
2 for `1/z`, 3 for `1/(1-z)`, 4 for `1-z`, and 5 for `1-1/z`.
The *transform_limit* version assumes that *which* is not 1.
If *which* is 2 or 3, it assumes that `b-a` represents an exact integer.
If *which* is 4 or 5, it assumes that `c-a-b` represents an exact integer.
In these cases, it computes the correct limit value.
See :func:`acb_hypgeom_2f1` for the meaning of *flags*.
.. function:: void acb_hypgeom_2f1_corner(acb_t res, const acb_t a, const acb_t b, const acb_t c, const acb_t z, int regularized, slong prec)
Computes `F(z)` near the corner cases `\exp(\pm \pi i \sqrt{3})`
by analytic continuation.
.. function:: int acb_hypgeom_2f1_choose(const acb_t z)
Chooses a method to compute the function based on the location of *z*
in the complex plane. If the return value is 0, direct summation should be used.
If the return value is 1 to 5, the transformation with this index in
:func:`acb_hypgeom_2f1_transform` should be used.
If the return value is 6, the corner case algorithm should be used.
.. function:: void acb_hypgeom_2f1(acb_t res, const acb_t a, const acb_t b, const acb_t c, const acb_t z, int flags, slong prec)
Computes `F(z)` or `\operatorname{\mathbf{F}}(z)`
using an automatic algorithm choice.
The following bit fields can be set in *flags*:
- *ACB_HYPGEOM_2F1_REGULARIZED* - computes the regularized
hypergeometric function `\operatorname{\mathbf{F}}(z)`.
Setting *flags* to 1 is the same as just toggling this option.
- *ACB_HYPGEOM_2F1_AB* - `a-b` is an integer.
- *ACB_HYPGEOM_2F1_ABC* - `a+b-c` is an integer.
- *ACB_HYPGEOM_2F1_AC* - `a-c` is an integer.
- *ACB_HYPGEOM_2F1_BC* - `b-c` is an integer.
The last four flags can be set to indicate that the respective parameter
differences are known to represent exact integers, even if the input intervals
are inexact. This allows the correct limits to be evaluated when
applying transformation formulas. For example, to evaluate
`{}_2F_1(\sqrt{2}, 1/2, \sqrt{2}+3/2, 9/10)`, the *ABC* flag should be set.
If not set, the result will be an indeterminate interval due to
internally dividing by an interval containing zero.
If the parameters are exact floating-point numbers (including exact
integers or half-integers), then the limits are computed automatically, and
setting these flags is unnecessary.
Currently, only the *AB* and *ABC* flags are used this way;
the *AC* and *BC* flags might be used in the future.
Orthogonal polynomials and functions
-------------------------------------------------------------------------------
.. function:: void acb_hypgeom_chebyshev_t(acb_t res, const acb_t n, const acb_t z, slong prec)
.. function:: void acb_hypgeom_chebyshev_u(acb_t res, const acb_t n, const acb_t z, slong prec)
Computes the Chebyshev polynomial (or Chebyshev function) of first or second kind
.. math::
T_n(z) = {}_2F_1\left(-n,n,\frac{1}{2},\frac{1-z}{2}\right)
.. math::
U_n(z) = (n+1) {}_2F_1\left(-n,n+2,\frac{3}{2},\frac{1-z}{2}\right).
The hypergeometric series definitions are only used for computation
near the point 1. In general, trigonometric representations are used.
For word-size integer *n*, :func:`acb_chebyshev_t_ui` and
:func:`acb_chebyshev_u_ui` are called.
.. function:: void acb_hypgeom_jacobi_p(acb_t res, const acb_t n, const acb_t a, const acb_t b, const acb_t z, slong prec)
Computes the Jacobi polynomial (or Jacobi function)
.. math::
P_n^{(a,b)}(z)=\frac{(a+1)_n}{\Gamma(n+1)} {}_2F_1\left(-n,n+a+b+1,a+1,\frac{1-z}{2}\right).
For nonnegative integer *n*, this is a polynomial in *a*, *b* and *z*,
even when the parameters are such that the hypergeometric series
is undefined. In such cases, the polynomial is evaluated using
direct methods.
.. function:: void acb_hypgeom_gegenbauer_c(acb_t res, const acb_t n, const acb_t m, const acb_t z, slong prec)
Computes the Gegenbauer polynomial (or Gegenbauer function)
.. math::
C_n^{m}(z)=\frac{(2m)_n}{\Gamma(n+1)} {}_2F_1\left(-n,2m+n,m+\frac{1}{2},\frac{1-z}{2}\right).
For nonnegative integer *n*, this is a polynomial in *m* and *z*,
even when the parameters are such that the hypergeometric series
is undefined. In such cases, the polynomial is evaluated using
direct methods.
.. function:: void acb_hypgeom_laguerre_l(acb_t res, const acb_t n, const acb_t m, const acb_t z, slong prec)
Computes the Laguerre polynomial (or Laguerre function)
.. math::
L_n^{m}(z)=\frac{(m+1)_n}{\Gamma(n+1)} {}_1F_1\left(-n,m+1,z\right).
For nonnegative integer *n*, this is a polynomial in *m* and *z*,
even when the parameters are such that the hypergeometric series
is undefined. In such cases, the polynomial is evaluated using
direct methods.
There are at least two incompatible ways to define the Laguerre function when
*n* is a negative integer. One possibility when `m = 0` is to define
`L_{-n}^0(z) = e^z L_{n-1}^0(-z)`. Another possibility is to cover this
case with the recurrence relation `L_{n-1}^m(z) + L_n^{m-1}(z) = L_n^m(z)`.
Currently, we leave this case undefined (returning indeterminate).
.. function:: void acb_hypgeom_hermite_h(acb_t res, const acb_t n, const acb_t z, slong prec)
Computes the Hermite polynomial (or Hermite function)
.. math::
H_n(z) = 2^n \sqrt{\pi} \left(
\frac{1}{\Gamma((1-n)/2)} {}_1F_1\left(-\frac{n}{2},\frac{1}{2},z^2\right)
-
\frac{2z}{\Gamma(-n/2)} {}_1F_1\left(\frac{1-n}{2},\frac{3}{2},z^2\right)\right).
.. function:: void acb_hypgeom_legendre_p(acb_t res, const acb_t n, const acb_t m, const acb_t z, int type, slong prec)
Sets *res* to the associated Legendre function of the first kind
evaluated for degree *n*, order *m*, and argument *z*.
When *m* is zero, this reduces to the Legendre polynomial `P_n(z)`.
Many different branch cut conventions appear in the literature.
If *type* is 0, the version
.. math::
P_n^m(z) = \frac{(1+z)^{m/2}}{(1-z)^{m/2}}
\mathbf{F}\left(-n, n+1, 1-m, \frac{1-z}{2}\right)
is computed, and if *type* is 1, the alternative version
.. math::
{\mathcal P}_n^m(z) = \frac{(z+1)^{m/2}}{(z-1)^{m/2}}
\mathbf{F}\left(-n, n+1, 1-m, \frac{1-z}{2}\right).
is computed. Type 0 and type 1 respectively correspond to
type 2 and type 3 in *Mathematica* and *mpmath*.
.. function:: void acb_hypgeom_legendre_q(acb_t res, const acb_t n, const acb_t m, const acb_t z, int type, slong prec)
Sets *res* to the associated Legendre function of the second kind
evaluated for degree *n*, order *m*, and argument *z*.
When *m* is zero, this reduces to the Legendre function `Q_n(z)`.
Many different branch cut conventions appear in the literature.
If *type* is 0, the version
.. math::
Q_n^m(z) = \frac{\pi}{2 \sin(\pi m)}
\left( \cos(\pi m) P_n^m(z) -
\frac{\Gamma(1+m+n)}{\Gamma(1-m+n)} P_n^{-m}(z)\right)
is computed, and if *type* is 1, the alternative version
.. math::
\mathcal{Q}_n^m(z) = \frac{\pi}{2 \sin(\pi m)} e^{\pi i m}
\left( \mathcal{P}_n^m(z) -
\frac{\Gamma(1+m+n)}{\Gamma(1-m+n)} \mathcal{P}_n^{-m}(z)\right)
is computed. Type 0 and type 1 respectively correspond to
type 2 and type 3 in *Mathematica* and *mpmath*.
When *m* is an integer, either expression is interpreted as a limit.
We make use of the connection formulas [WQ3a]_, [WQ3b]_ and [WQ3c]_
to allow computing the function even in the limiting case.
(The formula [WQ3d]_ would be useful, but is incorrect in the lower
half plane.)
.. [WQ3a] http://functions.wolfram.com/07.11.26.0033.01
.. [WQ3b] http://functions.wolfram.com/07.12.27.0014.01
.. [WQ3c] http://functions.wolfram.com/07.12.26.0003.01
.. [WQ3d] http://functions.wolfram.com/07.12.26.0088.01
.. function:: void acb_hypgeom_legendre_p_uiui_rec(acb_t res, ulong n, ulong m, const acb_t z, slong prec)
For nonnegative integer *n* and *m*, uses recurrence relations to evaluate
`(1-z^2)^{-m/2} P_n^m(z)` which is a polynomial in *z*.
.. function:: void acb_hypgeom_spherical_y(acb_t res, slong n, slong m, const acb_t theta, const acb_t phi, slong prec)
Computes the spherical harmonic of degree *n*, order *m*,
latitude angle *theta*, and longitude angle *phi*, normalized
such that
.. math::
Y_n^m(\theta, \phi) = \sqrt{\frac{2n+1}{4\pi} \frac{(n-m)!}{(n+m)!}} e^{im\phi} P_n^m(\cos(\theta)).
The definition is extended to negative *m* and *n* by symmetry.
This function is a polynomial in `\cos(\theta)` and `\sin(\theta)`.
We evaluate it using :func:`acb_hypgeom_legendre_p_uiui_rec`.
Dilogarithm
-------------------------------------------------------------------------------
The dilogarithm function
is given by `\operatorname{Li}_2(z) = -\int_0^z \frac{\log(1-t)}{t} dt = z {}_3F_2(1,1,1,2,2,z)`.
.. function:: void acb_hypgeom_dilog_bernoulli(acb_t res, const acb_t z, slong prec)
Computes the dilogarithm using a series expansion in `w = \log(z)`,
with rate of convergence `|w/(2\pi)|^n`. This provides good convergence
near `z = e^{\pm i \pi / 3}`, where hypergeometric series expansions fail.
Since the coefficients involve Bernoulli numbers, this method should
only be used at moderate precision.
.. function:: void acb_hypgeom_dilog_zero_taylor(acb_t res, const acb_t z, slong prec)
Computes the dilogarithm for *z* close to 0 using the hypergeometric series
(effective only when `|z| \ll 1`).
.. function:: void acb_hypgeom_dilog_zero(acb_t res, const acb_t z, slong prec)
Computes the dilogarithm for *z* close to 0, using the bit-burst algorithm
instead of the hypergeometric series directly at very high precision.
.. function:: void acb_hypgeom_dilog_transform(acb_t res, const acb_t z, int algorithm, slong prec)
Computes the dilogarithm by applying one of the transformations
`1/z`, `1-z`, `z/(z-1)`, `1/(1-z)`, indexed by *algorithm* from 1 to 4,
and calling :func:`acb_hypgeom_dilog_zero` with the reduced variable.
Alternatively, for *algorithm* between 5 and 7, starts from the
respective point `\pm i`, `(1\pm i)/2`, `(1\pm i)/2` (with the sign
chosen according to the midpoint of *z*)
and computes the dilogarithm by the bit-burst method.
.. function:: void acb_hypgeom_dilog_continuation(acb_t res, const acb_t a, const acb_t z, slong prec)
Computes `\operatorname{Li}_2(z) - \operatorname{Li}_2(a)` using
Taylor expansion at *a*. Binary splitting is used. Both *a* and *z*
should be well isolated from the points 0 and 1, except that *a* may
be exactly 0. If the straight line path from *a* to *b* crosses the branch
cut, this method provides continuous analytic continuation instead of
computing the principal branch.
.. function:: void acb_hypgeom_dilog_bitburst(acb_t res, acb_t z0, const acb_t z, slong prec)
Sets *z0* to a point with short bit expansion close to *z* and sets
*res* to `\operatorname{Li}_2(z) - \operatorname{Li}_2(z_0)`, computed
using the bit-burst algorithm.
.. function:: void acb_hypgeom_dilog(acb_t res, const acb_t z, slong prec)
Computes the dilogarithm using a default algorithm choice.
|