File: acb_modular.rst

package info (click to toggle)
flint 3.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 68,996 kB
  • sloc: ansic: 915,350; asm: 14,605; python: 5,340; sh: 4,512; lisp: 2,621; makefile: 787; cpp: 341
file content (580 lines) | stat: -rw-r--r-- 23,966 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
.. _acb-modular:

**acb_modular.h** -- modular forms of complex variables
===============================================================================

This module provides methods for numerical evaluation of modular
forms and Jacobi theta functions. See :ref:`acb_elliptic.h <acb-elliptic>`
for the closely related elliptic functions and integrals.

In the context of this module, *tau* or `\tau` always denotes an
element of the complex upper half-plane
`\mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}`.
We also often use the variable `q`, variously defined as `q = e^{2 \pi i \tau}`
(usually in relation to modular forms) or `q = e^{\pi i \tau}` (usually
in relation to theta functions) and satisfying `|q| < 1`.
We will clarify the local meaning of `q` every time such a quantity appears as
a function of `\tau`.

As usual, the numerical functions in this module compute strict error
bounds: if *tau* is represented by an :type:`acb_t` whose content
overlaps with the real line (or lies in the lower half-plane),
and *tau* is passed to a function defined only on `\mathbb{H}`, then
the output will have an infinite radius. The analogous behavior holds for
functions requiring `|q| < 1`.

The modular group
-------------------------------------------------------------------------------

.. type:: psl2z_struct

.. type:: psl2z_t

    Represents an element of the modular group `\text{PSL}(2, \mathbb{Z})`,
    namely an integer matrix

    .. math::

        \begin{pmatrix} a & b \\ c & d \end{pmatrix}

    with `ad-bc = 1`, and with signs canonicalized such that `c \ge 0`,
    and `d > 0` if `c = 0`.
    The struct members *a*, *b*, *c*, *d* are of type *fmpz*.

.. function:: void psl2z_init(psl2z_t g)

    Initializes *g* and set it to the identity element.

.. function:: void psl2z_clear(psl2z_t g)

    Clears *g*.

.. function:: void psl2z_swap(psl2z_t f, psl2z_t g)

    Swaps *f* and *g* efficiently.

.. function:: void psl2z_set(psl2z_t f, const psl2z_t g)

    Sets *f* to a copy of *g*.

.. function:: void psl2z_one(psl2z_t g)

    Sets *g* to the identity element.

.. function:: int psl2z_is_one(const psl2z_t g)

    Returns nonzero iff *g* is the identity element.

.. function:: void psl2z_print(const psl2z_t g)

    Prints *g* to standard output.

.. function:: void psl2z_fprint(FILE * file, const psl2z_t g)

    Prints *g* to the stream *file*.

.. function:: int psl2z_equal(const psl2z_t f, const psl2z_t g)

    Returns nonzero iff *f* and *g* are equal.

.. function:: void psl2z_mul(psl2z_t h, const psl2z_t f, const psl2z_t g)

    Sets *h* to the product of *f* and *g*, namely the matrix product
    with the signs canonicalized.

.. function:: void psl2z_inv(psl2z_t h, const psl2z_t g)

    Sets *h* to the inverse of *g*.

.. function:: int psl2z_is_correct(const psl2z_t g)

    Returns nonzero iff *g* contains correct data, i.e.
    satisfying `ad-bc = 1`, `c \ge 0`, and `d > 0` if `c = 0`.

.. function:: void psl2z_randtest(psl2z_t g, flint_rand_t state, slong bits)

    Sets *g* to a random element of `\text{PSL}(2, \mathbb{Z})`
    with entries of bit length at most *bits*
    (or 1, if *bits* is not positive). We first generate *a* and *d*, compute
    their Bezout coefficients, divide by the GCD, and then correct the signs.

Modular transformations
-------------------------------------------------------------------------------

.. function:: void acb_modular_transform(acb_t w, const psl2z_t g, const acb_t z, slong prec)

    Applies the modular transformation *g* to the complex number *z*,
    evaluating

    .. math::

        w = g z = \frac{az+b}{cz+d}.

.. function:: void acb_modular_fundamental_domain_approx_d(psl2z_t g, double x, double y, double one_minus_eps)

.. function:: void acb_modular_fundamental_domain_approx_arf(psl2z_t g, const arf_t x, const arf_t y, const arf_t one_minus_eps, slong prec)

    Attempts to determine a modular transformation *g* that maps the
    complex number `x+yi` to the fundamental domain or just
    slightly outside the fundamental domain, where the target tolerance
    (not a strict bound) is specified by *one_minus_eps*.

    The inputs are assumed to be finite numbers, with *y* positive.

    Uses floating-point iteration, repeatedly applying either
    the transformation `z \gets z + b` or `z \gets -1/z`. The iteration is
    terminated if `|x| \le 1/2` and `x^2 + y^2 \ge 1 - \varepsilon` where
    `1 - \varepsilon` is passed as *one_minus_eps*. It is also terminated
    if too many steps have been taken without convergence, or if the numbers
    end up too large or too small for the working precision.

    The algorithm can fail to produce a satisfactory transformation.
    The output *g* is always set to *some* correct modular transformation,
    but it is up to the user to verify a posteriori that *g* maps `x+yi`
    close enough to the fundamental domain.

.. function:: void acb_modular_fundamental_domain_approx(acb_t w, psl2z_t g, const acb_t z, const arf_t one_minus_eps, slong prec)

    Attempts to determine a modular transformation *g* that maps the
    complex number `z` to the fundamental domain or just
    slightly outside the fundamental domain, where the target tolerance
    (not a strict bound) is specified by *one_minus_eps*. It also computes
    the transformed value `w = gz`.

    This function first tries to use
    :func:`acb_modular_fundamental_domain_approx_d` and checks if the
    result is acceptable. If this fails, it calls
    :func:`acb_modular_fundamental_domain_approx_arf` with higher precision.
    Finally, `w = gz` is evaluated by a single application of *g*.

    The algorithm can fail to produce a satisfactory transformation.
    The output *g* is always set to *some* correct modular transformation,
    but it is up to the user to verify a posteriori that `w` is close enough
    to the fundamental domain.

.. function:: int acb_modular_is_in_fundamental_domain(const acb_t z, const arf_t tol, slong prec)

    Returns nonzero if it is certainly true that `|z| \ge 1 - \varepsilon` and 
    `|\operatorname{Re}(z)| \le 1/2 + \varepsilon` where `\varepsilon` is
    specified by *tol*. Returns zero if this is false or cannot be determined.

Addition sequences
-------------------------------------------------------------------------------

.. function:: void acb_modular_fill_addseq(slong * tab, slong len)

    Builds a near-optimal addition sequence for a sequence of integers
    which is assumed to be reasonably dense.

    As input, the caller should set each entry in *tab* to `-1` if
    that index is to be part of the addition sequence, and to 0 otherwise.
    On output, entry *i* in *tab* will either be zero (if the number is
    not part of the sequence), or a value *j* such that both
    *j* and `i - j` are also marked.
    The first two entries in *tab* are ignored (the number 1 is always
    assumed to be part of the sequence).

Jacobi theta functions
-------------------------------------------------------------------------------

Unfortunately, there are many inconsistent notational variations for
Jacobi theta functions in the literature. Unless otherwise noted,
we use the functions

.. math::

    \theta_1(z,\tau) = -i \sum_{n=-\infty}^{\infty} (-1)^n \exp(\pi i [(n + 1/2)^2 \tau + (2n + 1) z])
                     = 2 q_{1/4} \sum_{n=0}^{\infty} (-1)^n q^{n(n+1)} \sin((2n+1) \pi z)

.. math::

    \theta_2(z,\tau) = \sum_{n=-\infty}^{\infty} \exp(\pi i [(n + 1/2)^2 \tau + (2n + 1) z])
                     = 2 q_{1/4} \sum_{n=0}^{\infty} q^{n(n+1)} \cos((2n+1) \pi z)

.. math::

    \theta_3(z,\tau) = \sum_{n=-\infty}^{\infty} \exp(\pi i [n^2 \tau + 2n z])
                     = 1 + 2 \sum_{n=1}^{\infty} q^{n^2} \cos(2n \pi z)

.. math::

    \theta_4(z,\tau) = \sum_{n=-\infty}^{\infty} (-1)^n \exp(\pi i [n^2 \tau + 2n z])
                     = 1 + 2 \sum_{n=1}^{\infty} (-1)^n q^{n^2} \cos(2n \pi z)

where `q = \exp(\pi i \tau)` and `q_{1/4} = \exp(\pi i \tau / 4)`.
Note that many authors write `q_{1/4}` as `q^{1/4}`,
but the principal fourth root `(q)^{1/4} = \exp(\frac{1}{4} \log q)`
differs from `q_{1/4}` in general and some formulas are
only correct if one reads "`q^{1/4} = \exp(\pi i \tau / 4)`".
To avoid confusion, we only write `q^k` when `k` is an integer.

.. function:: void acb_modular_theta_transform(int * R, int * S, int * C, const psl2z_t g)

    We wish to write a theta function with quasiperiod `\tau` in terms
    of a theta function with quasiperiod `\tau' = g \tau`, given
    some `g = (a, b; c, d) \in \text{PSL}(2, \mathbb{Z})`.
    For `i = 0, 1, 2, 3`, this function computes integers `R_i` and `S_i`
    (*R* and *S* should be arrays of length 4)
    and `C \in \{0, 1\}` such that

    .. math::

        \theta_{1+i}(z,\tau) = \exp(\pi i R_i / 4) \cdot A \cdot B \cdot \theta_{1+S_i}(z',\tau')

    where `z' = z, A = B = 1` if `C = 0`, and

    .. math::

        z' = \frac{-z}{c \tau + d}, \quad
        A = \sqrt{\frac{i}{c \tau + d}}, \quad
        B = \exp\left(-\pi i c \frac{z^2}{c \tau + d}\right)

    if `C = 1`. Note that `A` is well-defined with the principal branch
    of the square root since `A^2 = i/(c \tau + d)` lies in the right half-plane.

    Firstly, if `c = 0`, we have
    `\theta_i(z, \tau) = \exp(-\pi i b / 4) \theta_i(z, \tau+b)`
    for `i = 1, 2`, whereas
    `\theta_3` and `\theta_4` remain unchanged when `b` is even
    and swap places with each other when `b` is odd.
    In this case we set `C = 0`.

    For an arbitrary `g` with `c > 0`, we set `C = 1`. The general
    transformations are given by Rademacher [Rad1973]_.
    We need the function `\theta_{m,n}(z,\tau)` defined for `m, n \in \mathbb{Z}` by
    (beware of the typos in [Rad1973]_)

    .. math::

        \theta_{0,0}(z,\tau) = \theta_3(z,\tau), \quad
        \theta_{0,1}(z,\tau) = \theta_4(z,\tau)

    .. math::

        \theta_{1,0}(z,\tau) = \theta_2(z,\tau), \quad
        \theta_{1,1}(z,\tau) = i \theta_1(z,\tau)

    .. math::

        \theta_{m+2,n}(z,\tau) = (-1)^n \theta_{m,n}(z,\tau)

    .. math::

        \theta_{m,n+2}(z,\tau) = \theta_{m,n}(z,\tau).

    Then we may write

    .. math::

        \theta_1(z,\tau) &= \varepsilon_1 A B \theta_1(z', \tau')

        \theta_2(z,\tau) &= \varepsilon_2 A B \theta_{1-c,1+a}(z', \tau')

        \theta_3(z,\tau) &= \varepsilon_3 A B \theta_{1+d-c,1-b+a}(z', \tau')

        \theta_4(z,\tau) &= \varepsilon_4 A B \theta_{1+d,1-b}(z', \tau')

    where `\varepsilon_i` is an 8th root of unity.
    Specifically, if we denote the 24th root of unity
    in the transformation formula of the Dedekind eta
    function by `\varepsilon(a,b,c,d) = \exp(\pi i R(a,b,c,d) / 12)`
    (see :func:`acb_modular_epsilon_arg`), then:

    .. math::

        \varepsilon_1(a,b,c,d) &= \exp(\pi i [R(-d,b,c,-a) + 1] / 4)

        \varepsilon_2(a,b,c,d) &= \exp(\pi i [-R(a,b,c,d) + (5+(2-c)a)] / 4)

        \varepsilon_3(a,b,c,d) &= \exp(\pi i [-R(a,b,c,d) + (4+(c-d-2)(b-a))] / 4)

        \varepsilon_4(a,b,c,d) &= \exp(\pi i [-R(a,b,c,d) + (3-(2+d)b)] / 4)

    These formulas are easily derived from the formulas in [Rad1973]_
    (Rademacher has the transformed/untransformed variables exchanged,
    and his "`\varepsilon`" differs from ours by a constant
    offset in the phase).

.. function:: void acb_modular_addseq_theta(slong * exponents, slong * aindex, slong * bindex, slong num)

    Constructs an addition sequence for the first *num* squares and triangular
    numbers interleaved (excluding zero), i.e. 1, 2, 4, 6, 9, 12, 16, 20, 25, 30 etc.

.. function:: void acb_modular_theta_sum(acb_ptr theta1, acb_ptr theta2, acb_ptr theta3, acb_ptr theta4, const acb_t w, int w_is_unit, const acb_t q, slong len, slong prec)

    Simultaneously computes the first *len* coefficients of each of the
    formal power series

    .. math::

        \theta_1(z+x,\tau) / q_{1/4} \in \mathbb{C}[[x]]

        \theta_2(z+x,\tau) / q_{1/4} \in \mathbb{C}[[x]]

        \theta_3(z+x,\tau) \in \mathbb{C}[[x]]

        \theta_4(z+x,\tau) \in \mathbb{C}[[x]]

    given `w = \exp(\pi i z)` and `q = \exp(\pi i \tau)`, by summing
    a finite truncation of the respective theta function series.
    In particular, with *len* equal to 1, computes the respective
    value of the theta function at the point *z*.
    We require *len* to be positive.
    If *w_is_unit* is nonzero, *w* is assumed to lie on the unit circle,
    i.e. *z* is assumed to be real.

    Note that the factor `q_{1/4}` is removed from `\theta_1` and `\theta_2`.
    To get the true theta function values, the user has to multiply
    this factor back. This convention avoids unnecessary computations,
    since the user can compute `q_{1/4} = \exp(\pi i \tau / 4)` followed by
    `q = (q_{1/4})^4`, and in many cases when computing products or quotients
    of theta functions, the factor `q_{1/4}` can be eliminated entirely.

    This function is intended for `|q| \ll 1`. It can be called with any
    `q`, but will return useless intervals if convergence is not rapid.
    For general evaluation of theta functions, the user should only call
    this function after applying a suitable modular transformation.

    We consider the sums together, alternatingly updating `(\theta_1, \theta_2)`
    or `(\theta_3, \theta_4)`. For `k = 0, 1, 2, \ldots`, the powers of `q`
    are `\lfloor (k+2)^2 / 4 \rfloor = 1, 2, 4, 6, 9` etc. and the powers of `w` are
    `\pm (k+2) = \pm 2, \pm 3, \pm 4, \ldots` etc. The scheme
    is illustrated by the following table:

    .. math::

        \begin{array}{llll}
               & \theta_1, \theta_2 & q^0 & (w^1 \pm w^{-1}) \\
        k = 0  & \theta_3, \theta_4 & q^1 & (w^2 \pm w^{-2}) \\
        k = 1  & \theta_1, \theta_2 & q^2 & (w^3 \pm w^{-3}) \\
        k = 2  & \theta_3, \theta_4 & q^4 & (w^4 \pm w^{-4}) \\
        k = 3  & \theta_1, \theta_2 & q^6 & (w^5 \pm w^{-5}) \\
        k = 4  & \theta_3, \theta_4 & q^9 & (w^6 \pm w^{-6}) \\
        k = 5  & \theta_1, \theta_2 & q^{12} & (w^7 \pm w^{-7}) \\
        \end{array}

    For some integer `N \ge 1`, the summation is stopped just before term
    `k = N`. Let `Q = |q|`, `W = \max(|w|,|w^{-1}|)`,
    `E = \lfloor (N+2)^2 / 4 \rfloor` and 
    `F = \lfloor (N+1)/2 \rfloor + 1`. The error of the
    zeroth derivative can be bounded as

    .. math::

        2 Q^E W^{N+2} \left[ 1 + Q^F W + Q^{2F} W^2 + \ldots \right]
        = \frac{2 Q^E W^{N+2}}{1 - Q^F W}

    provided that the denominator is positive (otherwise we set
    the error bound to infinity).
    When *len* is greater than 1, consider the derivative of order *r*.
    The term of index *k* and order *r* picks up a factor of magnitude
    `(k+2)^r` from differentiation of `w^{k+2}` (it also picks up a factor
    `\pi^r`, but we omit this until we rescale the coefficients
    at the end of the computation). Thus we have the error bound

    .. math::

        2 Q^E W^{N+2} (N+2)^r \left[ 1 + Q^F W \frac{(N+3)^r}{(N+2)^r} + Q^{2F} W^2 \frac{(N+4)^r}{(N+2)^r} + \ldots \right]

    which by the inequality `(1 + m/(N+2))^r \le \exp(mr/(N+2))`
    can be bounded as

    .. math::

        \frac{2 Q^E W^{N+2} (N+2)^r}{1 - Q^F W \exp(r/(N+2))},

    again valid when the denominator is positive.

    To actually evaluate the series, we write the even
    cosine terms as `w^{2n} + w^{-2n}`, the odd cosine terms as
    `w (w^{2n} + w^{-2n-2})`, and the sine terms as `w (w^{2n} - w^{-2n-2})`.
    This way we only need even powers of `w` and `w^{-1}`.
    The implementation is not yet optimized for real `z`, in which case
    further work can be saved.

    This function does not permit aliasing between input and output
    arguments.

.. function:: void acb_modular_theta_const_sum_basecase(acb_t theta2, acb_t theta3, acb_t theta4, const acb_t q, slong N, slong prec)

.. function:: void acb_modular_theta_const_sum_rs(acb_t theta2, acb_t theta3, acb_t theta4, const acb_t q, slong N, slong prec)

    Computes the truncated theta constant sums
    `\theta_2 = \sum_{k(k+1) < N} q^{k(k+1)}`,
    `\theta_3 = \sum_{k^2 < N} q^{k^2}`,
    `\theta_4 = \sum_{k^2 < N} (-1)^k q^{k^2}`.
    The *basecase* version uses a short addition sequence.
    The *rs* version uses rectangular splitting.
    The algorithms are described in [EHJ2016]_.

.. function:: void acb_modular_theta_const_sum(acb_t theta2, acb_t theta3, acb_t theta4, const acb_t q, slong prec)

    Computes the respective theta constants by direct summation
    (without applying modular transformations). This function
    selects an appropriate *N*, calls either
    :func:`acb_modular_theta_const_sum_basecase` or
    :func:`acb_modular_theta_const_sum_rs` or depending on *N*,
    and adds a bound for the truncation error.

.. function:: void acb_modular_theta_notransform(acb_t theta1, acb_t theta2, acb_t theta3, acb_t theta4, const acb_t z, const acb_t tau, slong prec)

    Evaluates the Jacobi theta functions `\theta_i(z,\tau)`, `i = 1, 2, 3, 4`
    simultaneously. This function does not move `\tau` to the fundamental domain.
    This is generally worse than :func:`acb_modular_theta`, but can
    be slightly better for moderate input.

.. function:: void acb_modular_theta(acb_t theta1, acb_t theta2, acb_t theta3, acb_t theta4, const acb_t z, const acb_t tau, slong prec)

    Evaluates the Jacobi theta functions `\theta_i(z,\tau)`, `i = 1, 2, 3, 4`
    simultaneously. This function moves `\tau` to the fundamental domain
    and then also reduces `z` modulo `\tau`
    before calling :func:`acb_modular_theta_sum`.

.. function:: void acb_modular_theta_jet_notransform(acb_ptr theta1, acb_ptr theta2, acb_ptr theta3, acb_ptr theta4, const acb_t z, const acb_t tau, slong len, slong prec)

.. function:: void acb_modular_theta_jet(acb_ptr theta1, acb_ptr theta2, acb_ptr theta3, acb_ptr theta4, const acb_t z, const acb_t tau, slong len, slong prec)

    Evaluates the Jacobi theta functions along with their derivatives
    with respect to *z*, writing the first *len* coefficients in the power
    series `\theta_i(z+x,\tau) \in \mathbb{C}[[x]]` to
    each respective output variable. The *notransform* version does not
    move `\tau` to the fundamental domain or reduce `z` during the computation.

.. function:: void _acb_modular_theta_series(acb_ptr theta1, acb_ptr theta2, acb_ptr theta3, acb_ptr theta4, acb_srcptr z, slong zlen, const acb_t tau, slong len, slong prec)

.. function:: void acb_modular_theta_series(acb_poly_t theta1, acb_poly_t theta2, acb_poly_t theta3, acb_poly_t theta4, const acb_poly_t z, const acb_t tau, slong len, slong prec)

    Evaluates the respective Jacobi theta functions of the power series *z*,
    truncated to length *len*. Either of the output variables can be *NULL*.


Dedekind eta function
-------------------------------------------------------------------------------

.. function:: void acb_modular_addseq_eta(slong * exponents, slong * aindex, slong * bindex, slong num)

    Constructs an addition sequence for the first *num* generalized pentagonal
    numbers (excluding zero), i.e. 1, 2, 5, 7, 12, 15, 22, 26, 35, 40 etc.

.. function:: void acb_modular_eta_sum(acb_t eta, const acb_t q, slong prec)

    Evaluates the Dedekind eta function
    without the leading 24th root, i.e.

    .. math:: \exp(-\pi i \tau/12) \eta(\tau) = \sum_{n=-\infty}^{\infty} (-1)^n q^{(3n^2-n)/2}

    given `q = \exp(2 \pi i \tau)`, by summing the defining series.

    This function is intended for `|q| \ll 1`. It can be called with any
    `q`, but will return useless intervals if convergence is not rapid.
    For general evaluation of the eta function, the user should only call
    this function after applying a suitable modular transformation.

    The series is evaluated using either a short addition sequence or
    rectangular splitting, depending on the number of terms.
    The algorithms are described in [EHJ2016]_.

.. function:: int acb_modular_epsilon_arg(const psl2z_t g)

    Given `g = (a, b; c, d)`, computes an integer `R` such that
    `\varepsilon(a,b,c,d) = \exp(\pi i R / 12)` is the 24th root of unity in
    the transformation formula for the Dedekind eta function,

    .. math::

        \eta\left(\frac{a\tau+b}{c\tau+d}\right) = \varepsilon (a,b,c,d)
            \sqrt{c\tau+d} \eta(\tau).

.. function:: void acb_modular_eta(acb_t r, const acb_t tau, slong prec)

    Computes the Dedekind eta function `\eta(\tau)` given `\tau` in the upper
    half-plane. This function applies the functional equation to move
    `\tau` to the fundamental domain before calling
    :func:`acb_modular_eta_sum`.

Modular forms
-------------------------------------------------------------------------------

.. function:: void acb_modular_j(acb_t r, const acb_t tau, slong prec)

    Computes Klein's j-invariant `j(\tau)` given `\tau` in the upper
    half-plane. The function is normalized so that `j(i) = 1728`.
    We first move `\tau` to the fundamental domain, which does not change
    the value of the function. Then we use the formula
    `j(\tau) = 32 (\theta_2^8+\theta_3^8+\theta_4^8)^3 / (\theta_2 \theta_3 \theta_4)^8` where
    `\theta_i = \theta_i(0,\tau)`.

.. function:: void acb_modular_lambda(acb_t r, const acb_t tau, slong prec)

    Computes the lambda function
    `\lambda(\tau) = \theta_2^4(0,\tau) / \theta_3^4(0,\tau)`, which
    is invariant under modular transformations `(a, b; c, d)`
    where `a, d` are odd and `b, c` are even.

.. function:: void acb_modular_delta(acb_t r, const acb_t tau, slong prec)

    Computes the modular discriminant `\Delta(\tau) = \eta(\tau)^{24}`,
    which transforms as

    .. math::

        \Delta\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^{12} \Delta(\tau).

    The modular discriminant is sometimes defined with an extra factor
    `(2\pi)^{12}`, which we omit in this implementation.

.. function:: void acb_modular_eisenstein(acb_ptr r, const acb_t tau, slong len, slong prec)

    Computes simultaneously the first *len* entries in the sequence
    of Eisenstein series `G_4(\tau), G_6(\tau), G_8(\tau), \ldots`,
    defined by

    .. math::

        G_{2k}(\tau) = \sum_{m^2 + n^2 \ne 0} \frac{1}{(m+n\tau )^{2k}}

    and satisfying

    .. math::

        G_{2k} \left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^{2k} G_{2k}(\tau).

    We first evaluate `G_4(\tau)` and `G_6(\tau)` on the fundamental
    domain using theta functions, and then compute the Eisenstein series
    of higher index using a recurrence relation.

Elliptic integrals and functions
-------------------------------------------------------------------------------

See the :ref:`acb_elliptic.h <acb-elliptic>` module for elliptic integrals and functions.
The following wrappers are available for backwards compatibility.

.. function:: void acb_modular_elliptic_k(acb_t w, const acb_t m, slong prec)

.. function:: void acb_modular_elliptic_k_cpx(acb_ptr w, const acb_t m, slong len, slong prec)

.. function:: void acb_modular_elliptic_e(acb_t w, const acb_t m, slong prec)

.. function:: void acb_modular_elliptic_p(acb_t wp, const acb_t z, const acb_t tau, slong prec)

.. function:: void acb_modular_elliptic_p_zpx(acb_ptr wp, const acb_t z, const acb_t tau, slong len, slong prec)

Class polynomials
-------------------------------------------------------------------------------

.. function:: void acb_modular_hilbert_class_poly(fmpz_poly_t res, slong D)

    Sets *res* to the Hilbert class polynomial of discriminant *D*,
    defined as

    .. math::

        H_D(x) = \prod_{(a,b,c)} \left(x - j\left(\frac{-b+\sqrt{D}}{2a}\right)\right)

    where `(a,b,c)` ranges over the primitive reduced positive
    definite binary quadratic forms of discriminant `b^2 - 4ac = D`.

    The Hilbert class polynomial is only defined if `D < 0` and *D*
    is congruent to 0 or 1 mod 4. If some other value of *D* is passed as
    input, *res* is set to the zero polynomial.