File: arb_hypgeom.rst

package info (click to toggle)
flint 3.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 68,996 kB
  • sloc: ansic: 915,350; asm: 14,605; python: 5,340; sh: 4,512; lisp: 2,621; makefile: 787; cpp: 341
file content (682 lines) | stat: -rw-r--r-- 35,096 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
.. _arb-hypgeom:

**arb_hypgeom.h** -- hypergeometric functions of real variables
==================================================================================

See :ref:`acb-hypgeom` for the general implementation of hypergeometric functions.

For convenience, this module provides versions of the same functions
for real variables
represented using :type:`arb_t` and :type:`arb_poly_t`.
Most methods are simple wrappers
around the complex versions,
but some of the functions in this module have been further optimized
specifically for real variables.

This module also provides certain functions exclusive to real variables,
such as functions for computing real roots of common special functions.

Rising factorials
-------------------------------------------------------------------------------

.. function:: void _arb_hypgeom_rising_coeffs_1(ulong * c, ulong k, slong n)
              void _arb_hypgeom_rising_coeffs_2(ulong * c, ulong k, slong n)
              void _arb_hypgeom_rising_coeffs_fmpz(fmpz * c, ulong k, slong n)

    Sets *c* to the coefficients of the rising factorial polynomial
    `(X+k)_n`. The *1* and *2* versions respectively
    compute single-word and double-word coefficients, without checking for
    overflow, while the *fmpz* version allows arbitrarily large coefficients.
    These functions are mostly intended for internal use; the *fmpz* version
    does not use an asymptotically fast algorithm.
    The degree *n* must be at least 2.

.. function:: void arb_hypgeom_rising_ui_forward(arb_t res, const arb_t x, ulong n, slong prec)
              void arb_hypgeom_rising_ui_bs(arb_t res, const arb_t x, ulong n, slong prec)
              void arb_hypgeom_rising_ui_rs(arb_t res, const arb_t x, ulong n, ulong m, slong prec)
              void arb_hypgeom_rising_ui_rec(arb_t res, const arb_t x, ulong n, slong prec)
              void arb_hypgeom_rising_ui(arb_t res, const arb_t x, ulong n, slong prec)
              void arb_hypgeom_rising(arb_t res, const arb_t x, const arb_t n, slong prec)

    Computes the rising factorial `(x)_n`.

    The *forward* version uses the forward recurrence.
    The *bs* version uses binary splitting.
    The *rs* version uses rectangular splitting. It takes an extra tuning
    parameter *m* which can be set to zero to choose automatically.
    The *rec* version chooses an algorithm automatically, avoiding
    use of the gamma function (so that it can be used in the computation
    of the gamma function).
    The default versions (*rising_ui* and *rising_ui*) choose an algorithm
    automatically and may additionally fall back on the gamma function.

.. function:: void arb_hypgeom_rising_ui_jet_powsum(arb_ptr res, const arb_t x, ulong n, slong len, slong prec)
              void arb_hypgeom_rising_ui_jet_bs(arb_ptr res, const arb_t x, ulong n, slong len, slong prec)
              void arb_hypgeom_rising_ui_jet_rs(arb_ptr res, const arb_t x, ulong n, ulong m, slong len, slong prec)
              void arb_hypgeom_rising_ui_jet(arb_ptr res, const arb_t x, ulong n, slong len, slong prec)

    Computes the jet of the rising factorial `(x)_n`, truncated to length *len*.
    In other words, constructs the polynomial `(X + x)_n \in \mathbb{R}[X]`,
    truncated if `\operatorname{len} < n + 1` (and zero-extended
    if `\operatorname{len} > n + 1`).

    The *powsum* version computes the sequence of powers of *x* and forms integral
    linear combinations of these.
    The *bs* version uses binary splitting.
    The *rs* version uses rectangular splitting. It takes an extra tuning
    parameter *m* which can be set to zero to choose automatically.
    The default version chooses an algorithm automatically.

Gamma function
-------------------------------------------------------------------------------

.. function:: void _arb_hypgeom_gamma_stirling_term_bounds(slong * bound, const mag_t zinv, slong N)

    For `1 \le n < N`, sets *bound* to an exponent bounding the *n*-th term
    in the Stirling series for the gamma function, given a precomputed upper
    bound for `|z|^{-1}`. This function is intended for internal use and
    does not check for underflow or underflow in the exponents.

.. function:: void arb_hypgeom_gamma_stirling_sum_horner(arb_t res, const arb_t z, slong N, slong prec)
              void arb_hypgeom_gamma_stirling_sum_improved(arb_t res, const arb_t z, slong N, slong K, slong prec)

    Sets *res* to the final sum in the Stirling series for the gamma function
    truncated before the term with index *N*, i.e. computes
    `\sum_{n=1}^{N-1} B_{2n} / (2n(2n-1) z^{2n-1})`.
    The *horner* version uses Horner scheme with gradual precision adjustments.
    The *improved* version uses rectangular splitting for the low-index
    terms and reexpands the high-index terms as hypergeometric polynomials,
    using a splitting parameter *K* (which can be set to 0 to use a default
    value).

.. function:: void arb_hypgeom_gamma_stirling(arb_t res, const arb_t x, int reciprocal, slong prec)

    Sets *res* to the gamma function of *x* computed using the Stirling
    series together with argument reduction. If *reciprocal* is set,
    the reciprocal gamma function is computed instead.

.. function:: int arb_hypgeom_gamma_taylor(arb_t res, const arb_t x, int reciprocal, slong prec)

    Attempts to compute the gamma function of *x* using Taylor series
    together with argument reduction. This is only supported if *x* and *prec*
    are both small enough. If successful, returns 1; otherwise, does nothing
    and returns 0. If *reciprocal* is set, the reciprocal gamma function is
    computed instead.

.. function:: void arb_hypgeom_gamma(arb_t res, const arb_t x, slong prec)
              void arb_hypgeom_gamma_fmpq(arb_t res, const fmpq_t x, slong prec)
              void arb_hypgeom_gamma_fmpz(arb_t res, const fmpz_t x, slong prec)

    Sets *res* to the gamma function of *x* computed using a default
    algorithm choice.

.. function:: void arb_hypgeom_rgamma(arb_t res, const arb_t x, slong prec)

    Sets *res* to the reciprocal gamma function of *x* computed using a default
    algorithm choice.

.. function:: void arb_hypgeom_lgamma(arb_t res, const arb_t x, slong prec)

    Sets *res* to the log-gamma function of *x* computed using a default
    algorithm choice.


Binomial coefficients
-------------------------------------------------------------------------------

.. function:: void arb_hypgeom_central_bin_ui(arb_t res, ulong n, slong prec)

    Computes the central binomial coefficient `{2n \choose n}`.

Generalized hypergeometric function
-------------------------------------------------------------------------------

.. function:: void arb_hypgeom_pfq(arb_t res, arb_srcptr a, slong p, arb_srcptr b, slong q, const arb_t z, int regularized, slong prec)

    Computes the generalized hypergeometric function `{}_pF_{q}(z)`,
    or the regularized version if *regularized* is set.

Confluent hypergeometric functions
-------------------------------------------------------------------------------

.. function:: void arb_hypgeom_0f1(arb_t res, const arb_t a, const arb_t z, int regularized, slong prec)

    Computes the confluent hypergeometric limit function
    `{}_0F_1(a,z)`, or `\frac{1}{\Gamma(a)} {}_0F_1(a,z)` if *regularized*
    is set.

.. function:: void arb_hypgeom_m(arb_t res, const arb_t a, const arb_t b, const arb_t z, int regularized, slong prec)

    Computes the confluent hypergeometric function
    `M(a,b,z) = {}_1F_1(a,b,z)`, or
    `\mathbf{M}(a,b,z) = \frac{1}{\Gamma(b)} {}_1F_1(a,b,z)` if *regularized* is set.

.. function:: void arb_hypgeom_1f1(arb_t res, const arb_t a, const arb_t b, const arb_t z, int regularized, slong prec)

    Alias for :func:`arb_hypgeom_m`.

.. function:: void arb_hypgeom_1f1_integration(arb_t res, const arb_t a, const arb_t b, const arb_t z, int regularized, slong prec)

    Computes the confluent hypergeometric function using numerical integration
    of the representation

    .. math::

        {}_1F_1(a,b,z) = \frac{\Gamma(b)}{\Gamma(a) \Gamma(b-a)} \int_0^1 e^{zt} t^{a-1} (1-t)^{b-a-1} dt.

    This algorithm can be useful if the parameters are large. This will currently
    only return a finite enclosure if `a \ge 1` and `b - a \ge 1`.

.. function:: void arb_hypgeom_u(arb_t res, const arb_t a, const arb_t b, const arb_t z, slong prec)

    Computes the confluent hypergeometric function `U(a,b,z)`.

.. function:: void arb_hypgeom_u_integration(arb_t res, const arb_t a, const arb_t b, const arb_t z, slong prec)

    Computes the confluent hypergeometric function `U(a,b,z)` using numerical integration
    of the representation

    .. math::

        U(a,b,z) = \frac{1}{\Gamma(a)} \int_0^{\infty} e^{-zt} t^{a-1} (1+t)^{b-a-1} dt.

    This algorithm can be useful if the parameters are large. This will currently
    only return a finite enclosure if `a \ge 1` and `z > 0`.

Gauss hypergeometric function
-------------------------------------------------------------------------------

.. function:: void arb_hypgeom_2f1(arb_t res, const arb_t a, const arb_t b, const arb_t c, const arb_t z, int regularized, slong prec)

    Computes the Gauss hypergeometric function
    `{}_2F_1(a,b,c,z)`, or
    `\mathbf{F}(a,b,c,z) = \frac{1}{\Gamma(c)} {}_2F_1(a,b,c,z)`
    if *regularized* is set.

    Additional evaluation flags can be passed via the *regularized*
    argument; see :func:`acb_hypgeom_2f1` for documentation.

.. function:: void arb_hypgeom_2f1_integration(arb_t res, const arb_t a, const arb_t b, const arb_t c, const arb_t z, int regularized, slong prec)

    Computes the Gauss hypergeometric function using numerical integration
    of the representation

    .. math::

        {}_2F_1(a,b,c,z) = \frac{\Gamma(a)}{\Gamma(b) \Gamma(c-b)} \int_0^1 t^{b-1} (1-t)^{c-b-1} (1-zt)^{-a} dt.

    This algorithm can be useful if the parameters are large. This will currently
    only return a finite enclosure if `b \ge 1` and `c - b \ge 1` and
    `z < 1`, possibly with *a* and *b* exchanged.


Error functions and Fresnel integrals
-------------------------------------------------------------------------------

.. function:: void arb_hypgeom_erf(arb_t res, const arb_t z, slong prec)

    Computes the error function `\operatorname{erf}(z)`.

.. function:: void _arb_hypgeom_erf_series(arb_ptr res, arb_srcptr z, slong zlen, slong len, slong prec)
              void arb_hypgeom_erf_series(arb_poly_t res, const arb_poly_t z, slong len, slong prec)

    Computes the error function of the power series *z*,
    truncated to length *len*.

.. function:: void arb_hypgeom_erfc(arb_t res, const arb_t z, slong prec)

    Computes the complementary error function
    `\operatorname{erfc}(z) = 1 - \operatorname{erf}(z)`.
    This function avoids catastrophic cancellation for large positive *z*.

.. function:: void _arb_hypgeom_erfc_series(arb_ptr res, arb_srcptr z, slong zlen, slong len, slong prec)
              void arb_hypgeom_erfc_series(arb_poly_t res, const arb_poly_t z, slong len, slong prec)

    Computes the complementary error function of the power series *z*,
    truncated to length *len*.

.. function:: void arb_hypgeom_erfi(arb_t res, const arb_t z, slong prec)

    Computes the imaginary error function
    `\operatorname{erfi}(z) = -i\operatorname{erf}(iz)`.

.. function:: void _arb_hypgeom_erfi_series(arb_ptr res, arb_srcptr z, slong zlen, slong len, slong prec)
              void arb_hypgeom_erfi_series(arb_poly_t res, const arb_poly_t z, slong len, slong prec)

    Computes the imaginary error function of the power series *z*,
    truncated to length *len*.

.. function:: void arb_hypgeom_erfinv(arb_t res, const arb_t z, slong prec)
              void arb_hypgeom_erfcinv(arb_t res, const arb_t z, slong prec)

    Computes the inverse error function `\operatorname{erf}^{-1}(z)`
    or inverse complementary error function `\operatorname{erfc}^{-1}(z)`.

.. function:: void arb_hypgeom_fresnel(arb_t res1, arb_t res2, const arb_t z, int normalized, slong prec)

    Sets *res1* to the Fresnel sine integral `S(z)` and *res2* to
    the Fresnel cosine integral `C(z)`. Optionally, just a single function
    can be computed by passing *NULL* as the other output variable.
    The definition `S(z) = \int_0^z \sin(t^2) dt` is used if *normalized* is 0,
    and `S(z) = \int_0^z \sin(\tfrac{1}{2} \pi t^2) dt` is used if
    *normalized* is 1 (the latter is the Abramowitz & Stegun convention).
    `C(z)` is defined analogously.

.. function:: void _arb_hypgeom_fresnel_series(arb_ptr res1, arb_ptr res2, arb_srcptr z, slong zlen, int normalized, slong len, slong prec)
              void arb_hypgeom_fresnel_series(arb_poly_t res1, arb_poly_t res2, const arb_poly_t z, int normalized, slong len, slong prec)

    Sets *res1* to the Fresnel sine integral and *res2* to the Fresnel
    cosine integral of the power series *z*, truncated to length *len*.
    Optionally, just a single function can be computed by passing *NULL*
    as the other output variable.

Incomplete gamma and beta functions
-------------------------------------------------------------------------------

.. function:: void arb_hypgeom_gamma_upper(arb_t res, const arb_t s, const arb_t z, int regularized, slong prec)

    If *regularized* is 0, computes the upper incomplete gamma function
    `\Gamma(s,z)`.

    If *regularized* is 1, computes the regularized upper incomplete
    gamma function `Q(s,z) = \Gamma(s,z) / \Gamma(s)`.

    If *regularized* is 2, computes the generalized exponential integral
    `z^{-s} \Gamma(s,z) = E_{1-s}(z)` instead (this option is mainly
    intended for internal use; :func:`arb_hypgeom_expint` is the intended
    interface for computing the exponential integral).

.. function:: void arb_hypgeom_gamma_upper_integration(arb_t res, const arb_t s, const arb_t z, int regularized, slong prec)

    Computes the upper incomplete gamma function using numerical
    integration.

.. function:: void _arb_hypgeom_gamma_upper_series(arb_ptr res, const arb_t s, arb_srcptr z, slong zlen, int regularized, slong n, slong prec)
              void arb_hypgeom_gamma_upper_series(arb_poly_t res, const arb_t s, const arb_poly_t z, int regularized, slong n, slong prec)

    Sets *res* to an upper incomplete gamma function where *s* is
    a constant and *z* is a power series, truncated to length *n*.
    The *regularized* argument has the same interpretation as in
    :func:`arb_hypgeom_gamma_upper`.

.. function:: void arb_hypgeom_gamma_lower(arb_t res, const arb_t s, const arb_t z, int regularized, slong prec)

    If *regularized* is 0, computes the lower incomplete gamma function
    `\gamma(s,z) = \frac{z^s}{s} {}_1F_1(s, s+1, -z)`.

    If *regularized* is 1, computes the regularized lower incomplete
    gamma function `P(s,z) = \gamma(s,z) / \Gamma(s)`.

    If *regularized* is 2, computes a further regularized lower incomplete
    gamma function `\gamma^{*}(s,z) = z^{-s} P(s,z)`.

.. function:: void _arb_hypgeom_gamma_lower_series(arb_ptr res, const arb_t s, arb_srcptr z, slong zlen, int regularized, slong n, slong prec)
              void arb_hypgeom_gamma_lower_series(arb_poly_t res, const arb_t s, const arb_poly_t z, int regularized, slong n, slong prec)

    Sets *res* to an lower incomplete gamma function where *s* is
    a constant and *z* is a power series, truncated to length *n*.
    The *regularized* argument has the same interpretation as in
    :func:`arb_hypgeom_gamma_lower`.

.. function:: void arb_hypgeom_beta_lower(arb_t res, const arb_t a, const arb_t b, const arb_t z, int regularized, slong prec)

    Computes the (lower) incomplete beta function, defined by
    `B(a,b;z) = \int_0^z t^{a-1} (1-t)^{b-1}`,
    optionally the regularized incomplete beta function
    `I(a,b;z) = B(a,b;z) / B(a,b;1)`.

.. function:: void _arb_hypgeom_beta_lower_series(arb_ptr res, const arb_t a, const arb_t b, arb_srcptr z, slong zlen, int regularized, slong n, slong prec)
              void arb_hypgeom_beta_lower_series(arb_poly_t res, const arb_t a, const arb_t b, const arb_poly_t z, int regularized, slong n, slong prec)

    Sets *res* to the lower incomplete beta function `B(a,b;z)` (optionally
    the regularized version `I(a,b;z)`) where *a* and *b* are constants
    and *z* is a power series, truncating the result to length *n*.
    The underscore method requires positive lengths and does not support
    aliasing.


Internal evaluation functions
................................................................................

.. function:: void _arb_hypgeom_gamma_lower_sum_rs_1(arb_t res, ulong p, ulong q, const arb_t z, slong N, slong prec)

    Computes `\sum_{k=0}^{N-1} z^k / (a)_k` where `a = p/q` using
    rectangular splitting. It is assumed that `p + qN` fits in a limb.

.. function:: void _arb_hypgeom_gamma_upper_sum_rs_1(arb_t res, ulong p, ulong q, const arb_t z, slong N, slong prec)

    Computes `\sum_{k=0}^{N-1} (a)_k / z^k` where `a = p/q` using
    rectangular splitting. It is assumed that `p + qN` fits in a limb.

.. function:: slong _arb_hypgeom_gamma_upper_fmpq_inf_choose_N(mag_t err, const fmpq_t a, const arb_t z, const mag_t abs_tol)

    Returns number of terms *N* and sets *err* to the truncation error for evaluating
    `\Gamma(a,z)` using the asymptotic series at infinity, targeting an absolute
    tolerance of *abs_tol*. The error may be set to *err* if the tolerance
    cannot be achieved. Assumes that *z* is positive.

.. function:: void _arb_hypgeom_gamma_upper_fmpq_inf_bsplit(arb_t res, const fmpq_t a, const arb_t z, slong N, slong prec)

    Sets *res* to the approximation of `\Gamma(a,z)` obtained by truncating
    the asymptotic series at infinity before term *N*.
    The truncation error bound has to be added separately.

.. function:: slong _arb_hypgeom_gamma_lower_fmpq_0_choose_N(mag_t err, const fmpq_t a, const arb_t z, const mag_t abs_tol)

    Returns number of terms *N* and sets *err* to the truncation error for evaluating
    `\gamma(a,z)` using the Taylor series at zero, targeting an absolute
    tolerance of *abs_tol*. Assumes that *z* is positive.

.. function:: void _arb_hypgeom_gamma_lower_fmpq_0_bsplit(arb_t res, const fmpq_t a, const arb_t z, slong N, slong prec)

    Sets *res* to the approximation of `\gamma(a,z)` obtained by truncating
    the Taylor series at zero before term *N*.
    The truncation error bound has to be added separately.

.. function:: slong _arb_hypgeom_gamma_upper_singular_si_choose_N(mag_t err, slong n, const arb_t z, const mag_t abs_tol)

    Returns number of terms *N* and sets *err* to the truncation error for evaluating
    `\Gamma(-n,z)` using the Taylor series at zero, targeting an absolute
    tolerance of *abs_tol*.

.. function:: void _arb_hypgeom_gamma_upper_singular_si_bsplit(arb_t res, slong n, const arb_t z, slong N, slong prec)

    Sets *res* to the approximation of `\Gamma(-n,z)` obtained by truncating
    the Taylor series at zero before term *N*.
    The truncation error bound has to be added separately.

.. function:: void _arb_gamma_upper_fmpq_step_bsplit(arb_t Gz1, const fmpq_t a, const arb_t z0, const arb_t z1, const arb_t Gz0, const arb_t expmz0, const mag_t abs_tol, slong prec)

    Given *Gz0* and *expmz0* representing the values `\Gamma(a,z_0)` and `\exp(-z_0)`,
    computes `\Gamma(a,z_1)` using the Taylor series at `z_0` evaluated
    using binary splitting,
    targeting an absolute error of *abs_tol*.
    Assumes that `z_0` and `z_1` are positive.

Exponential and trigonometric integrals
-------------------------------------------------------------------------------

.. function:: void arb_hypgeom_expint(arb_t res, const arb_t s, const arb_t z, slong prec)

    Computes the generalized exponential integral `E_s(z)`.

.. function:: void arb_hypgeom_ei(arb_t res, const arb_t z, slong prec)

    Computes the exponential integral `\operatorname{Ei}(z)`.

.. function:: void _arb_hypgeom_ei_series(arb_ptr res, arb_srcptr z, slong zlen, slong len, slong prec)
              void arb_hypgeom_ei_series(arb_poly_t res, const arb_poly_t z, slong len, slong prec)

    Computes the exponential integral of the power series *z*,
    truncated to length *len*.

.. function:: void _arb_hypgeom_si_asymp(arb_t res, const arb_t z, slong N, slong prec)
              void _arb_hypgeom_si_1f2(arb_t res, const arb_t z, slong N, slong wp, slong prec)
              void arb_hypgeom_si(arb_t res, const arb_t z, slong prec)

    Computes the sine integral `\operatorname{Si}(z)`.

.. function:: void _arb_hypgeom_si_series(arb_ptr res, arb_srcptr z, slong zlen, slong len, slong prec)
              void arb_hypgeom_si_series(arb_poly_t res, const arb_poly_t z, slong len, slong prec)

    Computes the sine integral of the power series *z*,
    truncated to length *len*.

.. function:: void _arb_hypgeom_ci_asymp(arb_t res, const arb_t z, slong N, slong prec)
              void _arb_hypgeom_ci_2f3(arb_t res, const arb_t z, slong N, slong wp, slong prec)
              void arb_hypgeom_ci(arb_t res, const arb_t z, slong prec)

    Computes the cosine integral `\operatorname{Ci}(z)`.
    The result is indeterminate if `z < 0` since the value of the function would be complex.

.. function:: void _arb_hypgeom_ci_series(arb_ptr res, arb_srcptr z, slong zlen, slong len, slong prec)
              void arb_hypgeom_ci_series(arb_poly_t res, const arb_poly_t z, slong len, slong prec)

    Computes the cosine integral of the power series *z*,
    truncated to length *len*.

.. function:: void arb_hypgeom_shi(arb_t res, const arb_t z, slong prec)

    Computes the hyperbolic sine integral `\operatorname{Shi}(z) = -i \operatorname{Si}(iz)`.

.. function:: void _arb_hypgeom_shi_series(arb_ptr res, arb_srcptr z, slong zlen, slong len, slong prec)
              void arb_hypgeom_shi_series(arb_poly_t res, const arb_poly_t z, slong len, slong prec)

    Computes the hyperbolic sine integral of the power series *z*,
    truncated to length *len*.

.. function:: void arb_hypgeom_chi(arb_t res, const arb_t z, slong prec)

    Computes the hyperbolic cosine integral `\operatorname{Chi}(z)`.
    The result is indeterminate if `z < 0` since the value of the function would be complex.

.. function:: void _arb_hypgeom_chi_series(arb_ptr res, arb_srcptr z, slong zlen, slong len, slong prec)
              void arb_hypgeom_chi_series(arb_poly_t res, const arb_poly_t z, slong len, slong prec)

    Computes the hyperbolic cosine integral of the power series *z*,
    truncated to length *len*.

.. function:: void arb_hypgeom_li(arb_t res, const arb_t z, int offset, slong prec)

    If *offset* is zero, computes the logarithmic integral
    `\operatorname{li}(z) = \operatorname{Ei}(\log(z))`.

    If *offset* is nonzero, computes the offset logarithmic integral
    `\operatorname{Li}(z) = \operatorname{li}(z) - \operatorname{li}(2)`.

    The result is indeterminate if `z < 0` since the value of the function would be complex.

.. function:: void _arb_hypgeom_li_series(arb_ptr res, arb_srcptr z, slong zlen, int offset, slong len, slong prec)
              void arb_hypgeom_li_series(arb_poly_t res, const arb_poly_t z, int offset, slong len, slong prec)

    Computes the logarithmic integral (optionally the offset version)
    of the power series *z*, truncated to length *len*.

Bessel functions
-------------------------------------------------------------------------------

.. function:: void arb_hypgeom_bessel_j(arb_t res, const arb_t nu, const arb_t z, slong prec)

    Computes the Bessel function of the first kind `J_{\nu}(z)`.

.. function:: void arb_hypgeom_bessel_y(arb_t res, const arb_t nu, const arb_t z, slong prec)

    Computes the Bessel function of the second kind `Y_{\nu}(z)`.

.. function:: void arb_hypgeom_bessel_jy(arb_t res1, arb_t res2, const arb_t nu, const arb_t z, slong prec)

    Sets *res1* to `J_{\nu}(z)` and *res2* to `Y_{\nu}(z)`, computed
    simultaneously.

.. function:: void arb_hypgeom_bessel_i(arb_t res, const arb_t nu, const arb_t z, slong prec)

    Computes the modified Bessel function of the first kind
    `I_{\nu}(z) = z^{\nu} (iz)^{-\nu} J_{\nu}(iz)`.

.. function:: void arb_hypgeom_bessel_i_scaled(arb_t res, const arb_t nu, const arb_t z, slong prec)

    Computes the function `e^{-z} I_{\nu}(z)`.

.. function:: void arb_hypgeom_bessel_k(arb_t res, const arb_t nu, const arb_t z, slong prec)

    Computes the modified Bessel function of the second kind `K_{\nu}(z)`.

.. function:: void arb_hypgeom_bessel_k_scaled(arb_t res, const arb_t nu, const arb_t z, slong prec)

    Computes the function `e^{z} K_{\nu}(z)`.

.. function:: void arb_hypgeom_bessel_i_integration(arb_t res, const arb_t nu, const arb_t z, int scaled, slong prec)
              void arb_hypgeom_bessel_k_integration(arb_t res, const arb_t nu, const arb_t z, int scaled, slong prec)

    Computes the modified Bessel functions using numerical integration.

Airy functions
-------------------------------------------------------------------------------

.. function:: void arb_hypgeom_airy(arb_t ai, arb_t ai_prime, arb_t bi, arb_t bi_prime, const arb_t z, slong prec)

    Computes the Airy functions `(\operatorname{Ai}(z), \operatorname{Ai}'(z), \operatorname{Bi}(z), \operatorname{Bi}'(z))`
    simultaneously. Any of the four function values can be omitted by passing
    *NULL* for the unwanted output variables, speeding up the evaluation.

.. function:: void arb_hypgeom_airy_jet(arb_ptr ai, arb_ptr bi, const arb_t z, slong len, slong prec)

    Writes to *ai* and *bi* the respective Taylor expansions of the Airy functions
    at the point *z*, truncated to length *len*.
    Either of the outputs can be *NULL* to avoid computing that function.
    The variable *z* is not allowed to be aliased with the outputs.
    To simplify the implementation, this method does not compute the
    series expansions of the primed versions directly; these are
    easily obtained by computing one extra coefficient and differentiating
    the output with :func:`_arb_poly_derivative`.

.. function:: void _arb_hypgeom_airy_series(arb_ptr ai, arb_ptr ai_prime, arb_ptr bi, arb_ptr bi_prime, arb_srcptr z, slong zlen, slong len, slong prec)
              void arb_hypgeom_airy_series(arb_poly_t ai, arb_poly_t ai_prime, arb_poly_t bi, arb_poly_t bi_prime, const arb_poly_t z, slong len, slong prec)

    Computes the Airy functions evaluated at the power series *z*,
    truncated to length *len*. As with the other Airy methods, any of the
    outputs can be *NULL*.

.. function:: void arb_hypgeom_airy_zero(arb_t a, arb_t a_prime, arb_t b, arb_t b_prime, const fmpz_t n, slong prec)

    Computes the *n*-th real zero `a_n`, `a'_n`, `b_n`, or `b'_n`
    for the respective Airy function or Airy function derivative.
    Any combination of the four output variables can be *NULL*.
    The zeros are indexed by increasing magnitude, starting with
    `n = 1` to follow the convention in the literature.
    An index *n* that is not positive is invalid input.
    The implementation uses asymptotic expansions for the zeros
    [PS1991]_ together with the interval Newton method for refinement.

Coulomb wave functions
-------------------------------------------------------------------------------

.. function:: void arb_hypgeom_coulomb(arb_t F, arb_t G, const arb_t l, const arb_t eta, const arb_t z, slong prec)

    Writes to *F*, *G* the values of the respective
    Coulomb wave functions `F_{\ell}(\eta,z)` and `G_{\ell}(\eta,z)`.
    Either of the outputs can be *NULL*.

.. function:: void arb_hypgeom_coulomb_jet(arb_ptr F, arb_ptr G, const arb_t l, const arb_t eta, const arb_t z, slong len, slong prec)

    Writes to *F*, *G* the respective Taylor expansions of the
    Coulomb wave functions at the point *z*, truncated to length *len*.
    Either of the outputs can be *NULL*.

.. function:: void _arb_hypgeom_coulomb_series(arb_ptr F, arb_ptr G, const arb_t l, const arb_t eta, arb_srcptr z, slong zlen, slong len, slong prec)
              void arb_hypgeom_coulomb_series(arb_poly_t F, arb_poly_t G, const arb_t l, const arb_t eta, const arb_poly_t z, slong len, slong prec)

    Computes the Coulomb wave functions evaluated at the power series *z*,
    truncated to length *len*. Either of the outputs can be *NULL*.

Orthogonal polynomials and functions
-------------------------------------------------------------------------------

.. function:: void arb_hypgeom_chebyshev_t(arb_t res, const arb_t nu, const arb_t z, slong prec)
              void arb_hypgeom_chebyshev_u(arb_t res, const arb_t nu, const arb_t z, slong prec)
              void arb_hypgeom_jacobi_p(arb_t res, const arb_t n, const arb_t a, const arb_t b, const arb_t z, slong prec)
              void arb_hypgeom_gegenbauer_c(arb_t res, const arb_t n, const arb_t m, const arb_t z, slong prec)
              void arb_hypgeom_laguerre_l(arb_t res, const arb_t n, const arb_t m, const arb_t z, slong prec)
              void arb_hypgeom_hermite_h(arb_t res, const arb_t nu, const arb_t z, slong prec)

    Computes Chebyshev, Jacobi, Gegenbauer, Laguerre or Hermite polynomials,
    or their extensions to non-integer orders.

.. function:: void arb_hypgeom_legendre_p(arb_t res, const arb_t n, const arb_t m, const arb_t z, int type, slong prec)
              void arb_hypgeom_legendre_q(arb_t res, const arb_t n, const arb_t m, const arb_t z, int type, slong prec)

    Computes Legendre functions of the first and second kind.
    See :func:`acb_hypgeom_legendre_p` and :func:`acb_hypgeom_legendre_q`
    for definitions.

.. function:: void arb_hypgeom_legendre_p_ui_deriv_bound(mag_t dp, mag_t dp2, ulong n, const arb_t x, const arb_t x2sub1)

    Sets *dp* to an upper bound for `P'_n(x)` and *dp2* to an upper
    bound for `P''_n(x)` given *x* assumed to represent a real
    number with `|x| \le 1`. The variable *x2sub1* must contain
    the precomputed value `1-x^2` (or `x^2-1`). This method is used
    internally to bound the propagated error for Legendre polynomials.

.. function:: void arb_hypgeom_legendre_p_ui_zero(arb_t res, arb_t res_prime, ulong n, const arb_t x, slong K, slong prec)
              void arb_hypgeom_legendre_p_ui_one(arb_t res, arb_t res_prime, ulong n, const arb_t x, slong K, slong prec)
              void arb_hypgeom_legendre_p_ui_asymp(arb_t res, arb_t res_prime, ulong n, const arb_t x, slong K, slong prec)
              void arb_hypgeom_legendre_p_ui_rec(arb_t res, arb_t res_prime, ulong n, const arb_t x, slong prec)
              void arb_hypgeom_legendre_p_ui(arb_t res, arb_t res_prime, ulong n, const arb_t x, slong prec)

    Evaluates the ordinary Legendre polynomial `P_n(x)`. If *res_prime* is
    non-NULL, simultaneously evaluates the derivative `P'_n(x)`.

    The overall algorithm is described in [JM2018]_.

    The versions *zero*, *one* respectively use the hypergeometric series
    expansions at `x = 0` and `x = 1` while the *asymp* version uses an
    asymptotic series on `(-1,1)` intended for large *n*. The parameter *K*
    specifies the exact number of expansion terms to use (if the series
    expansion truncated at this point does not give the exact polynomial,
    an error bound is computed automatically).
    The asymptotic expansion with error bounds is given in [Bog2012]_.
    The *rec* version uses the forward recurrence implemented using
    fixed-point arithmetic; it is only intended for the interval `(-1,1)`,
    moderate *n* and modest precision.

    The default version attempts to choose the best algorithm automatically.
    It also estimates the amount of cancellation in the hypergeometric series
    and increases the working precision to compensate, bounding the
    propagated error using derivative bounds.

.. function:: void arb_hypgeom_legendre_p_ui_root(arb_t res, arb_t weight, ulong n, ulong k, slong prec)

    Sets *res* to the *k*-th root of the Legendre polynomial `P_n(x)`.
    We index the roots in decreasing order

    .. math::

        1 > x_0 > x_1 > \ldots > x_{n-1} > -1

    (which corresponds to ordering the roots of `P_n(\cos(\theta))`
    in order of increasing `\theta`).
    If *weight* is non-NULL, it is set to the weight corresponding
    to the node `x_k` for Gaussian quadrature on `[-1,1]`.
    Note that only `\lceil n / 2 \rceil` roots need to be computed,
    since the remaining roots are given by `x_k = -x_{n-1-k}`.

    We compute an enclosing interval using an asymptotic approximation followed
    by some number of Newton iterations, using the error bounds given
    in [Pet1999]_. If very high precision is requested, the root is
    subsequently refined using interval Newton steps with doubling working
    precision.

Dilogarithm
-------------------------------------------------------------------------------

.. function:: void arb_hypgeom_dilog(arb_t res, const arb_t z, slong prec)

    Computes the dilogarithm `\operatorname{Li}_2(z)`.

Hypergeometric sums
-------------------------------------------------------------------------------

.. function:: void arb_hypgeom_sum_fmpq_arb_forward(arb_t res, const fmpq * a, slong alen, const fmpq * b, slong blen, const arb_t z, int reciprocal, slong N, slong prec)
              void arb_hypgeom_sum_fmpq_arb_rs(arb_t res, const fmpq * a, slong alen, const fmpq * b, slong blen, const arb_t z, int reciprocal, slong N, slong prec)
              void arb_hypgeom_sum_fmpq_arb(arb_t res, const fmpq * a, slong alen, const fmpq * b, slong blen, const arb_t z, int reciprocal, slong N, slong prec)

    Sets *res* to the finite hypergeometric sum
    `\sum_{n=0}^{N-1} (\textbf{a})_n z^n / (\textbf{b})_n`
    where `\textbf{x}_n = (x_1)_n (x_2)_n \cdots`,
    given vectors of rational parameters *a* (of length *alen*)
    and *b* (of length *blen*).
    If *reciprocal* is set, replace `z` by `1 / z`.
    The *forward* version uses the forward recurrence, optimized by
    delaying divisions, the *rs* version
    uses rectangular splitting, and the default version uses
    an automatic algorithm choice.

.. function:: void arb_hypgeom_sum_fmpq_imag_arb_forward(arb_t res1, arb_t res2, const fmpq * a, slong alen, const fmpq * b, slong blen, const arb_t z, int reciprocal, slong N, slong prec)
              void arb_hypgeom_sum_fmpq_imag_arb_rs(arb_t res1, arb_t res2, const fmpq * a, slong alen, const fmpq * b, slong blen, const arb_t z, int reciprocal, slong N, slong prec)
              void arb_hypgeom_sum_fmpq_imag_arb_bs(arb_t res1, arb_t res2, const fmpq * a, slong alen, const fmpq * b, slong blen, const arb_t z, int reciprocal, slong N, slong prec)
              void arb_hypgeom_sum_fmpq_imag_arb(arb_t res1, arb_t res2, const fmpq * a, slong alen, const fmpq * b, slong blen, const arb_t z, int reciprocal, slong N, slong prec)

    Sets *res1* and *res2* to the real and imaginary part of the
    finite hypergeometric sum
    `\sum_{n=0}^{N-1} (\textbf{a})_n (i z)^n / (\textbf{b})_n`.
    If *reciprocal* is set, replace `z` by `1 / z`.