1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
|
.. _ca:
**ca.h** -- exact real and complex numbers
===============================================================================
A :type:`ca_t` represents a real or complex number in a form suitable
for exact field arithmetic or comparison.
Exceptionally, a :type:`ca_t` may represent a special nonnumerical value,
such as an infinity.
Introduction: numbers
-------------------------------------------------------------------------------
A *Calcium number* is a real or complex number
represented as an element of a formal field `K = \mathbb{Q}(a_1, \ldots, a_n)`
where the symbols `a_k` denote fixed algebraic or transcendental numbers
called *extension numbers*.
For example, `e^{-2 \pi} - 3 i` may be represented as
`(1 - 3 a_2^2 a_1) / a_2^2` in the field `\mathbb{Q}(a_1,a_2)` with
`a_1 = i, a_2 = e^{\pi}`.
Extension numbers and fields are documented
in the following separate modules:
* :ref:`ca-ext`
* :ref:`ca-field`
The user does not need to construct extension numbers or formal
extension fields explicitly: each :type:`ca_t` contains an internal
pointer to its formal field, and operations on Calcium numbers generate
and cache fields automatically as needed to express the results.
This representation is not canonical (in general). A given complex number
can be represented in different ways depending on
the choice of formal field *K*. Even within a fixed field *K*,
a number can have different representations if there are algebraic
relations between the extension numbers.
Two numbers *x* and *y* can be tested for inequality using numerical
evaluation; to test for equality, it may be necessary to
eliminate dependencies between extension numbers.
One of the central goals of Calcium will be to
implement heuristics for such elimination.
Together with each formal field *K*, Calcium stores a
*reduction ideal* `I = \{g_1,\ldots,g_m\}`
with `g_i \in \mathbb{Z}[a_1,\ldots,a_n]`, defining a set of algebraic relations
`g_i(a_1,\ldots,a_n) = 0`.
Relations can be absolute, say `g_i = a_j^2 + 1`, or relative,
say `g_i = 2 a_j - 4 a_k - a_l a_m`.
The reduction ideal effectively partitions `K` into
equivalence classes of
complex numbers
(e.g. `i^2 = -1` or `2 \log(\pi i) = 4 \log(\sqrt{\pi}) + \pi i`),
enabling simplifications and equality proving.
Extension numbers are always sorted `a_1 \succ a_2 \succ \ldots \succ a_n`
where `\succ` denotes a structural ordering (see :func:`ca_cmp_repr`).
If the reduction ideal is triangular and the multivariate polynomial
arithmetic uses lexicographic ordering, reduction by *I*
eliminates numbers `a_i` with higher complexity in the sense of `\succ`.
The reduction ideal is an imperfect computational crutch: it is not guaranteed
to capture *all* algebraic relations, and reduction is not guaranteed
to produce uniquely defined representatives.
However, in the specific case of an absolute number field `K = \mathbb{Q}(a)`
where *a* is a :type:`qqbar_t` extension, the reduction ideal (consisting
of a single minimal polynomial) is canonical and field
elements of *K* can be chosen canonically.
Introduction: special values
-------------------------------------------------------------------------------
In order to provide a closed arithmetic system and express limiting
cases of operators and special functions, a :type:`ca_t` can hold
any of the following special values besides ordinary numbers:
* *Unsigned infinity*, a formal object `{\tilde \infty}` representing
the value of `1 / 0`. More generally, this is the
value of meromorphic functions at poles.
* *Signed infinity*, a formal object `a \cdot \infty` where the sign `a`
is a Calcium number with `|a| = 1`.
The most common values are `+\infty, -\infty, +i \infty, -i \infty`.
Signed infinities are used to denote directional limits and logarithmic
singularities (for example, `\log(0) = -\infty`).
* *Undefined*, a formal object representing the value of indeterminate
forms such as `0 / 0` and essential singularities such as
`\exp(\tilde \infty)`, where a number or infinity would not make sense
as an answer.
* *Unknown*, a meta-value used to signal that the actual desired value
could not be computed, either because Calcium does not (yet) have a data
structure or algorithm for that case, or because doing so would be
unreasonably expensive. This occurs, for example, if Calcium performs
a division and is unable to decide whether the result is a number,
unsigned infinity or undefined (because testing for zero fails).
Wrappers may want to check output variables for
*Unknown* and throw an exception (e.g. *NotImplementedError* in Python).
The distinction between *Calcium numbers* (which must represent
elements of `\mathbb{C}`) and the different kinds of nonnumerical values
(infinities, Undefined or Unknown) is essential. Nonnumerical values may
not be used as field extension numbers `a_k`, and the denominator of
a formal field element must always represent a nonzero complex number.
Accordingly, for any given Calcium value *x* that is not *Unknown*,
it is exactly known whether *x* represents A) a number, B) unsigned infinity,
C) a signed infinity, or D) Undefined.
Number objects
-------------------------------------------------------------------------------
For all types, a *type_t* is defined as an array of length one of type
*type_struct*, permitting a *type_t* to be passed by reference.
.. type:: ca_struct
.. type:: ca_t
A :type:`ca_t` contains an index to a field *K*, and
data representing an element *x* of *K*.
The data is either an inline rational number (:type:`fmpq_t`), an
inline Antic number field element (:type:`nf_elem_t`)
when *K* is an absolute algebraic number field `\mathbb{Q}(a)`,
or a pointer to a heap-allocated :type:`fmpz_mpoly_q_t` representing
an element of a generic field `\mathbb{Q}(a_1,\ldots,a_n)`.
Special values are encoded using magic bits in the field index.
.. type:: ca_ptr
Alias for ``ca_struct *``, used for vectors of numbers.
.. type:: ca_srcptr
Alias for ``const ca_struct *``, used for vectors of numbers
when passed as constant input to functions.
Context objects
-------------------------------------------------------------------------------
.. type:: ca_ctx_struct
.. type:: ca_ctx_t
A :type:`ca_ctx_t` context object holds a cache of fields *K* and
constituent extension numbers `a_k`.
The field index in an individual :type:`ca_t` instance represents
a shallow reference to the object defining the field *K* within the
context object, so creating many elements of the same field is cheap.
Since context objects are mutable (and may be mutated even when
performing read-only operations on :type:`ca_t` instances), they must not
be accessed simultaneously by different threads: in multithreaded
environments, the user must use a separate context object for each thread.
.. function:: void ca_ctx_init(ca_ctx_t ctx)
Initializes the context object *ctx* for use.
Any evaluation options stored in the context object
are set to default values.
.. function:: void ca_ctx_clear(ca_ctx_t ctx)
Clears the context object *ctx*, freeing any memory allocated internally.
This function should only be called after all :type:`ca_t` instances
referring to this context have been cleared.
.. function:: void ca_ctx_print(ca_ctx_t ctx)
Prints a description of the context *ctx* to standard output.
This will give a complete listing of the cached fields in *ctx*.
Memory management for numbers
-------------------------------------------------------------------------------
.. function:: void ca_init(ca_t x, ca_ctx_t ctx)
Initializes the variable *x* for use, associating it with the
context object *ctx*. The value of *x* is set to the rational number 0.
.. function:: void ca_clear(ca_t x, ca_ctx_t ctx)
Clears the variable *x*.
.. function:: void ca_swap(ca_t x, ca_t y, ca_ctx_t ctx)
Efficiently swaps the variables *x* and *y*.
Symbolic expressions
-------------------------------------------------------------------------------
.. function:: void ca_get_fexpr(fexpr_t res, const ca_t x, ulong flags, ca_ctx_t ctx)
Sets *res* to a symbolic expression representing *x*.
.. function:: int ca_set_fexpr(ca_t res, const fexpr_t expr, ca_ctx_t ctx)
Sets *res* to the value represented by the symbolic expression *expr*.
Returns 1 on success and 0 on failure.
This function essentially just traverses the expression tree using
``ca`` arithmetic; it does not provide advanced symbolic evaluation.
It is guaranteed to at least be able to parse the output of
:func:`ca_get_fexpr`.
.. _ca-printing:
Printing
-------------------------------------------------------------------------------
The style of printed output is controlled by
``ctx->options[CA_OPT_PRINT_FLAGS]``
(see :ref:`context-options`) which can be set to any
combination of the following flags:
.. macro:: CA_PRINT_N
Print a decimal approximation of the number.
The approximation is guaranteed to be correctly rounded to within
one unit in the last place.
If combined with ``CA_PRINT_REPR``, numbers appearing
within the symbolic representation will also be printed with
decimal approximations.
Warning: printing a decimal approximation requires a computation,
which can be expensive. It can also mutate
cached data (numerical enclosures of extension numbers), affecting
subsequent computations.
.. macro:: CA_PRINT_DIGITS
Multiplied by a positive integer, specifies the number of
decimal digits to show with ``CA_PRINT_N``. If not given,
the default precision is six digits.
.. macro:: CA_PRINT_REPR
Print the symbolic representation of the number (including
its recursive elements). If used together with ``CA_PRINT_N``,
field elements will print as ``decimal {symbolic}`` while
extension numbers will print as ``decimal [symbolic]``.
All extension numbers appearing in the field defining ``x``
and in the inner constructions of those extension numbers
will be given local labels ``a``, ``b``, etc. for this printing.
.. macro:: CA_PRINT_FIELD
For each field element, explicitly print its formal field
along with its reduction ideal if present, e.g. ``QQ`` or
``QQ(a,b,c) / <a-b, c^2+1>``.
.. macro:: CA_PRINT_DEFAULT
The default print style. Equivalent to ``CA_PRINT_N | CA_PRINT_REPR``.
.. macro:: CA_PRINT_DEBUG
Verbose print style for debugging. Equivalent to ``CA_PRINT_N | CA_PRINT_REPR | CA_PRINT_FIELD``.
As a special case, small integers are always printed
as simple literals.
As illustration, here are the numbers
`-7`, `2/3`, `(\sqrt{3}+5)/2` and `\sqrt{2} (\log(\pi) + \pi i)`
printed in various styles::
# CA_PRINT_DEFAULT
-7
0.666667 {2/3}
3.36603 {(a+5)/2 where a = 1.73205 [a^2-3=0]}
1.61889 + 4.44288*I {a*c+b*c*d where a = 1.14473 [Log(3.14159 {b})], b = 3.14159 [Pi], c = 1.41421 [c^2-2=0], d = I [d^2+1=0]}
# CA_PRINT_N
-7
0.666667
3.36603
1.61889 + 4.44288*I
# CA_PRINT_N | (CA_PRINT_DIGITS * 20)
-7
0.66666666666666666667
3.3660254037844386468
1.6188925298220266685 + 4.4428829381583662470*I
# CA_PRINT_REPR
-7
2/3
(a+5)/2 where a = [a^2-3=0]
a*c+b*c*d where a = Log(b), b = Pi, c = [c^2-2=0], d = [d^2+1=0]
# CA_PRINT_DEBUG
-7
0.666667 {2/3 in QQ}
3.36603 {(a+5)/2 in QQ(a)/<a^2-3> where a = 1.73205 [a^2-3=0]}
1.61889 + 4.44288*I {a*c+b*c*d in QQ(a,b,c,d)/<c^2-2, d^2+1> where a = 1.14473 [Log(3.14159 {b in QQ(b)})], b = 3.14159 [Pi], c = 1.41421 [c^2-2=0], d = I [d^2+1=0]}
.. function:: void ca_print(const ca_t x, ca_ctx_t ctx)
Prints *x* to standard output.
.. function:: void ca_fprint(FILE * fp, const ca_t x, ca_ctx_t ctx)
Prints *x* to the file *fp*.
.. function:: char * ca_get_str(const ca_t x, ca_ctx_t ctx)
Prints *x* to a string which is returned.
The user should free this string by calling ``flint_free``.
.. function:: void ca_printn(const ca_t x, slong n, ca_ctx_t ctx)
Prints an *n*-digit numerical representation of *x* to standard output.
Special values
-------------------------------------------------------------------------------
.. function:: void ca_zero(ca_t res, ca_ctx_t ctx)
void ca_one(ca_t res, ca_ctx_t ctx)
void ca_neg_one(ca_t res, ca_ctx_t ctx)
Sets *res* to the integer 0, 1 or -1. This creates a canonical representation
of this number as an element of the trivial field `\mathbb{Q}`.
.. function:: void ca_i(ca_t res, ca_ctx_t ctx)
void ca_neg_i(ca_t res, ca_ctx_t ctx)
Sets *res* to the imaginary unit `i = \sqrt{-1}`, or its negation `-i`.
This creates a canonical representation of `i` as the generator of the
algebraic number field `\mathbb{Q}(i)`.
.. function:: void ca_pi(ca_t res, ca_ctx_t ctx)
Sets *res* to the constant `\pi`. This creates an element
of the transcendental number field `\mathbb{Q}(\pi)`.
.. function:: void ca_pi_i(ca_t res, ca_ctx_t ctx)
Sets *res* to the constant `\pi i`. This creates an element of the
composite field `\mathbb{Q}(i,\pi)` rather than representing `\pi i`
(or even `2 \pi i`, which for some purposes would be more elegant)
as an atomic quantity.
.. function:: void ca_euler(ca_t res, ca_ctx_t ctx)
Sets *res* to Euler's constant `\gamma`. This creates an element
of the (transcendental?) number field `\mathbb{Q}(\gamma)`.
.. function:: void ca_unknown(ca_t res, ca_ctx_t ctx)
Sets *res* to the meta-value *Unknown*.
.. function:: void ca_undefined(ca_t res, ca_ctx_t ctx)
Sets *res* to *Undefined*.
.. function:: void ca_uinf(ca_t res, ca_ctx_t ctx)
Sets *res* to unsigned infinity `{\tilde \infty}`.
.. function:: void ca_pos_inf(ca_t res, ca_ctx_t ctx)
void ca_neg_inf(ca_t res, ca_ctx_t ctx)
void ca_pos_i_inf(ca_t res, ca_ctx_t ctx)
void ca_neg_i_inf(ca_t res, ca_ctx_t ctx)
Sets *res* to the signed infinity `+\infty`, `-\infty`, `+i \infty` or `-i \infty`.
Assignment and conversion
-------------------------------------------------------------------------------
.. function:: void ca_set(ca_t res, const ca_t x, ca_ctx_t ctx)
Sets *res* to a copy of *x*.
.. function:: void ca_set_si(ca_t res, slong v, ca_ctx_t ctx)
void ca_set_ui(ca_t res, ulong v, ca_ctx_t ctx)
void ca_set_fmpz(ca_t res, const fmpz_t v, ca_ctx_t ctx)
void ca_set_fmpq(ca_t res, const fmpq_t v, ca_ctx_t ctx)
Sets *res* to the integer or rational number *v*. This creates a canonical
representation of this number as an element of the trivial field
`\mathbb{Q}`.
.. function:: void ca_set_d(ca_t res, double x, ca_ctx_t ctx)
void ca_set_d_d(ca_t res, double x, double y, ca_ctx_t ctx)
Sets *res* to the value of *x*, or the complex value `x + yi`.
NaN is interpreted as *Unknown* (not *Undefined*).
.. function:: void ca_transfer(ca_t res, ca_ctx_t res_ctx, const ca_t src, ca_ctx_t src_ctx)
Sets *res* to *src* where the corresponding context objects *res_ctx* and
*src_ctx* may be different.
This operation preserves the mathematical value represented by *src*,
but may result in a different internal representation depending on the
settings of the context objects.
Conversion of algebraic numbers
-------------------------------------------------------------------------------
.. function:: void ca_set_qqbar(ca_t res, const qqbar_t x, ca_ctx_t ctx)
Sets *res* to the algebraic number *x*.
If *x* is rational, *res* is set to the canonical representation as
an element in the trivial field `\mathbb{Q}`.
If *x* is irrational, this function always sets *res* to an element of
a univariate number field `\mathbb{Q}(a)`. It will not, for example,
identify `\sqrt{2} + \sqrt{3}`
as an element of `\mathbb{Q}(\sqrt{2}, \sqrt{3})`. However, it may
attempt to find a simpler number field than that generated by *x*
itself. For example:
* If *x* is quadratic, it will be expressed as an element of
`\mathbb{Q}(\sqrt{N})` where *N* has no small repeated factors
(obtained by performing a smooth factorization of the discriminant).
* TODO: if possible, coerce *x* to a low-degree cyclotomic field.
.. function:: int ca_get_fmpz(fmpz_t res, const ca_t x, ca_ctx_t ctx)
int ca_get_fmpq(fmpq_t res, const ca_t x, ca_ctx_t ctx)
int ca_get_qqbar(qqbar_t res, const ca_t x, ca_ctx_t ctx)
Attempts to evaluate *x* to an explicit integer, rational or
algebraic number. If successful, sets *res* to this number and
returns 1. If unsuccessful, returns 0.
The conversion certainly fails if *x* does not represent an integer,
rational or algebraic number (respectively), but can also fail if *x*
is too expensive to compute under
the current evaluation limits.
In particular, the evaluation will be aborted if an intermediate
algebraic number (or more precisely, the resultant polynomial prior
to factorization) exceeds ``CA_OPT_QQBAR_DEG_LIMIT``
or the coefficients exceed some multiple of ``CA_OPT_PREC_LIMIT``.
Note that evaluation may hit those limits even if the minimal polynomial
for *x* itself is small. The conversion can also fail if no algorithm
has been implemented for the functions appearing in the construction
of *x*.
.. function:: int ca_can_evaluate_qqbar(const ca_t x, ca_ctx_t ctx)
Checks if :func:`ca_get_qqbar` has a chance to succeed. In effect,
this checks if all extension numbers are manifestly algebraic
numbers (without doing any evaluation).
Random generation
-------------------------------------------------------------------------------
.. function:: void ca_randtest_rational(ca_t res, flint_rand_t state, slong bits, ca_ctx_t ctx)
Sets *res* to a random rational number with numerator and denominator
up to *bits* bits in size.
.. function:: void ca_randtest(ca_t res, flint_rand_t state, slong depth, slong bits, ca_ctx_t ctx)
Sets *res* to a random number generated by evaluating a random expression.
The algorithm randomly selects between generating a "simple" number
(a random rational number or quadratic field element with coefficients
up to *bits* in size, or a random builtin constant),
or if *depth* is nonzero, applying a random arithmetic operation or
function to operands produced through recursive calls with
*depth* - 1. The output is guaranteed to be a number, not a special value.
.. function:: void ca_randtest_special(ca_t res, flint_rand_t state, slong depth, slong bits, ca_ctx_t ctx)
Randomly generates either a special value or a number.
.. function:: void ca_randtest_same_nf(ca_t res, flint_rand_t state, const ca_t x, slong bits, slong den_bits, ca_ctx_t ctx)
Sets *res* to a random element in the same number field as *x*,
with numerator coefficients up to *bits* in size and denominator
up to *den_bits* in size. This function requires that *x* is an
element of an absolute number field.
Representation properties
-------------------------------------------------------------------------------
The following functions deal with the representation of a :type:`ca_t` and
hence can always be decided quickly and unambiguously. The return value
for predicates is 0 for false and 1 for true.
.. function:: int ca_equal_repr(const ca_t x, const ca_t y, ca_ctx_t ctx)
Returns whether *x* and *y* have identical representation. For field
elements, this checks if *x* and *y* belong to the same formal field
(with generators having identical representation) and are represented by
the same rational function within that field.
For special values, this tests
equality of the special values, with *Unknown* handled as if it were
a value rather than a meta-value: that is, *Unknown* = *Unknown* gives 1,
and *Unknown* = *y* gives 0 for any other kind of value *y*.
If neither *x* nor *y* is *Unknown*, then representation equality
implies that *x* and *y* describe to the same mathematical value, but if
either operand is *Unknown*, the result is meaningless for
mathematical comparison.
.. function:: int ca_cmp_repr(const ca_t x, const ca_t y, ca_ctx_t ctx)
Compares the representations of *x* and *y* in a canonical sort order,
returning -1, 0 or 1. This only performs a lexicographic comparison
of the representations of *x* and *y*; the return value does not say
anything meaningful about the numbers represented by *x* and *y*.
.. function:: ulong ca_hash_repr(const ca_t x, ca_ctx_t ctx)
Hashes the representation of *x*.
.. function:: int ca_is_unknown(const ca_t x, ca_ctx_t ctx)
Returns whether *x* is Unknown.
.. function:: int ca_is_special(const ca_t x, ca_ctx_t ctx)
Returns whether *x* is a special value or metavalue
(not a field element).
.. function:: int ca_is_qq_elem(const ca_t x, ca_ctx_t ctx)
Returns whether *x* is represented as an element of the
rational field `\mathbb{Q}`.
.. function:: int ca_is_qq_elem_zero(const ca_t x, ca_ctx_t ctx)
int ca_is_qq_elem_one(const ca_t x, ca_ctx_t ctx)
int ca_is_qq_elem_integer(const ca_t x, ca_ctx_t ctx)
Returns whether *x* is represented as the element 0, 1 or
any integer in the rational field `\mathbb{Q}`.
.. function:: int ca_is_nf_elem(const ca_t x, ca_ctx_t ctx)
Returns whether *x* is represented as an element of a univariate
algebraic number field `\mathbb{Q}(a)`.
.. function:: int ca_is_cyclotomic_nf_elem(slong * p, ulong * q, const ca_t x, ca_ctx_t ctx)
Returns whether *x* is represented as an element of a univariate
cyclotomic field, i.e. `\mathbb{Q}(a)` where *a* is a root of unity.
If *p* and *q* are not *NULL* and *x* is represented as an
element of a cyclotomic field, this also sets *p* and *q* to the
minimal integers with `0 \le p < q` such that the generating
root of unity is `a = e^{2 \pi i p / q}`.
Note that the answer 0 does not prove that *x* is not
a cyclotomic number,
and the order *q* is also not necessarily the generator of the
*smallest* cyclotomic field containing *x*.
For the purposes of this function, only nontrivial
cyclotomic fields count; the return value is 0 if *x*
is represented as a rational number.
.. function:: int ca_is_generic_elem(const ca_t x, ca_ctx_t ctx)
Returns whether *x* is represented as a generic field element;
i.e. it is not a special value, not represented as
an element of the rational field, and not represented as
an element of a univariate algebraic number field.
Value predicates
-------------------------------------------------------------------------------
The following predicates check a mathematical property which might
not be effectively decidable. The result is a :type:`truth_t` to allow
representing an unknown outcome.
.. function:: truth_t ca_check_is_number(const ca_t x, ca_ctx_t ctx)
Tests if *x* is a number. The result is ``T_TRUE`` is *x* is
a field element (and hence a complex number), ``T_FALSE`` if *x* is
an infinity or *Undefined*, and ``T_UNKNOWN`` if *x* is *Unknown*.
.. function:: truth_t ca_check_is_zero(const ca_t x, ca_ctx_t ctx)
truth_t ca_check_is_one(const ca_t x, ca_ctx_t ctx)
truth_t ca_check_is_neg_one(const ca_t x, ca_ctx_t ctx)
truth_t ca_check_is_i(const ca_t x, ca_ctx_t ctx)
truth_t ca_check_is_neg_i(const ca_t x, ca_ctx_t ctx)
Tests if *x* is equal to the number `0`, `1`, `-1`, `i`, or `-i`.
.. function:: truth_t ca_check_is_algebraic(const ca_t x, ca_ctx_t ctx)
truth_t ca_check_is_rational(const ca_t x, ca_ctx_t ctx)
truth_t ca_check_is_integer(const ca_t x, ca_ctx_t ctx)
Tests if *x* is respectively an algebraic number, a rational number,
or an integer.
.. function:: truth_t ca_check_is_real(const ca_t x, ca_ctx_t ctx)
Tests if *x* is a real number. Warning: this returns ``T_FALSE`` if *x* is an
infinity with real sign.
.. function:: truth_t ca_check_is_negative_real(const ca_t x, ca_ctx_t ctx)
Tests if *x* is a negative real number. Warning: this returns ``T_FALSE``
if *x* is negative infinity.
.. function:: truth_t ca_check_is_imaginary(const ca_t x, ca_ctx_t ctx)
Tests if *x* is an imaginary number. Warning: this returns ``T_FALSE`` if
*x* is an infinity with imaginary sign.
.. function:: truth_t ca_check_is_undefined(const ca_t x, ca_ctx_t ctx)
Tests if *x* is the special value *Undefined*.
.. function:: truth_t ca_check_is_infinity(const ca_t x, ca_ctx_t ctx)
Tests if *x* is any infinity (unsigned or signed).
.. function:: truth_t ca_check_is_uinf(const ca_t x, ca_ctx_t ctx)
Tests if *x* is unsigned infinity `{\tilde \infty}`.
.. function:: truth_t ca_check_is_signed_inf(const ca_t x, ca_ctx_t ctx)
Tests if *x* is any signed infinity.
.. function:: truth_t ca_check_is_pos_inf(const ca_t x, ca_ctx_t ctx)
truth_t ca_check_is_neg_inf(const ca_t x, ca_ctx_t ctx)
truth_t ca_check_is_pos_i_inf(const ca_t x, ca_ctx_t ctx)
truth_t ca_check_is_neg_i_inf(const ca_t x, ca_ctx_t ctx)
Tests if *x* is equal to the signed infinity `+\infty`, `-\infty`,
`+i \infty`, `-i \infty`, respectively.
Comparisons
-------------------------------------------------------------------------------
.. function:: truth_t ca_check_equal(const ca_t x, const ca_t y, ca_ctx_t ctx)
Tests `x = y` as a mathematical equality.
The result is ``T_UNKNOWN`` if either operand is *Unknown*.
The result may also be ``T_UNKNOWN`` if *x* and *y* are numerically
indistinguishable and cannot be proved equal or unequal by
an exact computation.
.. function:: truth_t ca_check_lt(const ca_t x, const ca_t y, ca_ctx_t ctx)
truth_t ca_check_le(const ca_t x, const ca_t y, ca_ctx_t ctx)
truth_t ca_check_gt(const ca_t x, const ca_t y, ca_ctx_t ctx)
truth_t ca_check_ge(const ca_t x, const ca_t y, ca_ctx_t ctx)
Compares *x* and *y*, implementing the respective operations
`x < y`, `x \le y`, `x > y`, `x \ge y`.
Only real numbers and `-\infty` and `+\infty` are considered comparable.
The result is ``T_FALSE`` (not ``T_UNKNOWN``) if either operand is not
comparable (being a nonreal complex number, unsigned infinity, or
undefined).
Field structure operations
-------------------------------------------------------------------------------
.. function:: void ca_merge_fields(ca_t resx, ca_t resy, const ca_t x, const ca_t y, ca_ctx_t ctx)
Sets *resx* and *resy* to copies of *x* and *y* coerced to a common field.
Both *x* and *y* must be field elements (not special values).
In the present implementation, this simply merges the lists of generators,
avoiding duplication. In the future, it will be able to eliminate
generators satisfying algebraic relations.
.. function:: void ca_condense_field(ca_t res, ca_ctx_t ctx)
Attempts to demote the value of *res* to a trivial subfield of its
current field by removing unused generators. In particular, this demotes
any obviously rational value to the trivial field `\mathbb{Q}`.
This function is applied automatically in most operations
(arithmetic operations, etc.).
.. function:: ca_ext_ptr ca_is_gen_as_ext(const ca_t x, ca_ctx_t ctx)
If *x* is a generator of its formal field, `x = a_k \in \mathbb{Q}(a_1,\ldots,a_n)`,
returns a pointer to the extension number defining `a_k`. If *x* is
not a generator, returns *NULL*.
Arithmetic
-------------------------------------------------------------------------------
.. function:: void ca_neg(ca_t res, const ca_t x, ca_ctx_t ctx)
Sets *res* to the negation of *x*.
For numbers, this operation amounts to a direct negation within the
formal field.
For a signed infinity `c \infty`, negation gives `(-c) \infty`; all other
special values are unchanged.
.. function:: void ca_add_fmpq(ca_t res, const ca_t x, const fmpq_t y, ca_ctx_t ctx)
void ca_add_fmpz(ca_t res, const ca_t x, const fmpz_t y, ca_ctx_t ctx)
void ca_add_ui(ca_t res, const ca_t x, ulong y, ca_ctx_t ctx)
void ca_add_si(ca_t res, const ca_t x, slong y, ca_ctx_t ctx)
void ca_add(ca_t res, const ca_t x, const ca_t y, ca_ctx_t ctx)
Sets *res* to the sum of *x* and *y*. For special values, the following
rules apply (`c \infty` denotes a signed infinity, `|c| = 1`):
* `c \infty + d \infty = c \infty` if `c = d`
* `c \infty + d \infty = \text{Undefined}` if `c \ne d`
* `\tilde \infty + c \infty = \tilde \infty + \tilde \infty = \text{Undefined}`
* `c \infty + z = c \infty` if `z \in \mathbb{C}`
* `\tilde \infty + z = \tilde \infty` if `z \in \mathbb{C}`
* `z + \text{Undefined} = \text{Undefined}` for any value *z* (including *Unknown*)
In any other case involving special values, or if the specific case cannot
be distinguished, the result is *Unknown*.
.. function:: void ca_sub_fmpq(ca_t res, const ca_t x, const fmpq_t y, ca_ctx_t ctx)
void ca_sub_fmpz(ca_t res, const ca_t x, const fmpz_t y, ca_ctx_t ctx)
void ca_sub_ui(ca_t res, const ca_t x, ulong y, ca_ctx_t ctx)
void ca_sub_si(ca_t res, const ca_t x, slong y, ca_ctx_t ctx)
void ca_fmpq_sub(ca_t res, const fmpq_t x, const ca_t y, ca_ctx_t ctx)
void ca_fmpz_sub(ca_t res, const fmpz_t x, const ca_t y, ca_ctx_t ctx)
void ca_ui_sub(ca_t res, ulong x, const ca_t y, ca_ctx_t ctx)
void ca_si_sub(ca_t res, slong x, const ca_t y, ca_ctx_t ctx)
void ca_sub(ca_t res, const ca_t x, const ca_t y, ca_ctx_t ctx)
Sets *res* to the difference of *x* and *y*.
This is equivalent to computing `x + (-y)`.
.. function:: void ca_mul_fmpq(ca_t res, const ca_t x, const fmpq_t y, ca_ctx_t ctx)
void ca_mul_fmpz(ca_t res, const ca_t x, const fmpz_t y, ca_ctx_t ctx)
void ca_mul_ui(ca_t res, const ca_t x, ulong y, ca_ctx_t ctx)
void ca_mul_si(ca_t res, const ca_t x, slong y, ca_ctx_t ctx)
void ca_mul(ca_t res, const ca_t x, const ca_t y, ca_ctx_t ctx)
Sets *res* to the product of *x* and *y*. For special values, the following
rules apply (`c \infty` denotes a signed infinity, `|c| = 1`):
* `c \infty \cdot d \infty = c d \infty`
* `c \infty \cdot \tilde \infty = \tilde \infty`
* `\tilde \infty \cdot \tilde \infty = \tilde \infty`
* `c \infty \cdot z = \operatorname{sgn}(z) c \infty` if `z \in \mathbb{C} \setminus \{0\}`
* `c \infty \cdot 0 = \text{Undefined}`
* `\tilde \infty \cdot 0 = \text{Undefined}`
* `z \cdot \text{Undefined} = \text{Undefined}` for any value *z* (including *Unknown*)
In any other case involving special values, or if the specific case cannot
be distinguished, the result is *Unknown*.
.. function:: void ca_inv(ca_t res, const ca_t x, ca_ctx_t ctx)
Sets *res* to the multiplicative inverse of *x*. In a univariate algebraic
number field, this always produces a rational denominator, but the
denominator might not be rationalized in a multivariate
field.
For special values
and zero, the following rules apply:
* `1 / (c \infty) = 1 / \tilde \infty = 0`
* `1 / 0 = \tilde \infty`
* `1 / \text{Undefined} = \text{Undefined}`
* `1 / \text{Unknown} = \text{Unknown}`
If it cannot be determined whether *x* is zero or nonzero,
the result is *Unknown*.
.. function:: void ca_fmpq_div(ca_t res, const fmpq_t x, const ca_t y, ca_ctx_t ctx)
void ca_fmpz_div(ca_t res, const fmpz_t x, const ca_t y, ca_ctx_t ctx)
void ca_ui_div(ca_t res, ulong x, const ca_t y, ca_ctx_t ctx)
void ca_si_div(ca_t res, slong x, const ca_t y, ca_ctx_t ctx)
void ca_div_fmpq(ca_t res, const ca_t x, const fmpq_t y, ca_ctx_t ctx)
void ca_div_fmpz(ca_t res, const ca_t x, const fmpz_t y, ca_ctx_t ctx)
void ca_div_ui(ca_t res, const ca_t x, ulong y, ca_ctx_t ctx)
void ca_div_si(ca_t res, const ca_t x, slong y, ca_ctx_t ctx)
void ca_div(ca_t res, const ca_t x, const ca_t y, ca_ctx_t ctx)
Sets *res* to the quotient of *x* and *y*. This is equivalent
to computing `x \cdot (1 / y)`. For special values and division
by zero, this implies the following rules
(`c \infty` denotes a signed infinity, `|c| = 1`):
* `(c \infty) / (d \infty) = (c \infty) / \tilde \infty = \tilde \infty / (c \infty) = \tilde \infty / \tilde \infty = \text{Undefined}`
* `c \infty / z = (c / \operatorname{sgn}(z)) \infty` if `z \in \mathbb{C} \setminus \{0\}`
* `c \infty / 0 = \tilde \infty / 0 = \tilde \infty`
* `z / (c \infty) = z / \tilde \infty = 0` if `z \in \mathbb{C}`
* `z / 0 = \tilde \infty` if `z \in \mathbb{C} \setminus \{0\}`
* `0 / 0 = \text{Undefined}`
* `z / \text{Undefined} = \text{Undefined}` for any value *z* (including *Unknown*)
* `\text{Undefined} / z = \text{Undefined}` for any value *z* (including *Unknown*)
In any other case involving special values, or if the specific case cannot
be distinguished, the result is *Unknown*.
.. function:: void ca_dot(ca_t res, const ca_t initial, int subtract, ca_srcptr x, slong xstep, ca_srcptr y, slong ystep, slong len, ca_ctx_t ctx)
Computes the dot product of the vectors *x* and *y*, setting
*res* to `s + (-1)^{subtract} \sum_{i=0}^{len-1} x_i y_i`.
The initial term *s* is optional and can be
omitted by passing *NULL* (equivalently, `s = 0`).
The parameter *subtract* must be 0 or 1.
The length *len* is allowed to be negative, which is equivalent
to a length of zero.
The parameters *xstep* or *ystep* specify a step length for
traversing subsequences of the vectors *x* and *y*; either can be
negative to step in the reverse direction starting from
the initial pointer.
Aliasing is allowed between *res* and *s* but not between
*res* and the entries of *x* and *y*.
.. function:: void ca_fmpz_poly_evaluate(ca_t res, const fmpz_poly_t poly, const ca_t x, ca_ctx_t ctx)
void ca_fmpq_poly_evaluate(ca_t res, const fmpq_poly_t poly, const ca_t x, ca_ctx_t ctx)
Sets *res* to the polynomial *poly* evaluated at *x*.
.. function:: void ca_fmpz_mpoly_evaluate_horner(ca_t res, const fmpz_mpoly_t f, ca_srcptr x, const fmpz_mpoly_ctx_t mctx, ca_ctx_t ctx)
void ca_fmpz_mpoly_evaluate_iter(ca_t res, const fmpz_mpoly_t f, ca_srcptr x, const fmpz_mpoly_ctx_t mctx, ca_ctx_t ctx)
void ca_fmpz_mpoly_evaluate(ca_t res, const fmpz_mpoly_t f, ca_srcptr x, const fmpz_mpoly_ctx_t mctx, ca_ctx_t ctx)
Sets *res* to the multivariate polynomial *f* evaluated at the vector of arguments *x*.
.. function:: void ca_fmpz_mpoly_q_evaluate(ca_t res, const fmpz_mpoly_q_t f, ca_srcptr x, const fmpz_mpoly_ctx_t mctx, ca_ctx_t ctx)
Sets *res* to the multivariate rational function *f* evaluated at the vector of arguments *x*.
.. function:: void ca_fmpz_mpoly_q_evaluate_no_division_by_zero(ca_t res, const fmpz_mpoly_q_t f, ca_srcptr x, const fmpz_mpoly_ctx_t mctx, ca_ctx_t ctx)
void ca_inv_no_division_by_zero(ca_t res, const ca_t x, ca_ctx_t ctx)
These functions behave like the normal arithmetic functions,
but assume (and do not check) that division by zero cannot occur.
Division by zero will result in undefined behavior.
Powers and roots
-------------------------------------------------------------------------------
.. function:: void ca_sqr(ca_t res, const ca_t x, ca_ctx_t ctx)
Sets *res* to the square of *x*.
.. function:: void ca_pow_fmpq(ca_t res, const ca_t x, const fmpq_t y, ca_ctx_t ctx)
void ca_pow_fmpz(ca_t res, const ca_t x, const fmpz_t y, ca_ctx_t ctx)
void ca_pow_ui(ca_t res, const ca_t x, ulong y, ca_ctx_t ctx)
void ca_pow_si(ca_t res, const ca_t x, slong y, ca_ctx_t ctx)
void ca_pow(ca_t res, const ca_t x, const ca_t y, ca_ctx_t ctx)
Sets *res* to *x* raised to the power *y*.
Handling of special values is not yet implemented.
.. function:: void ca_pow_si_arithmetic(ca_t res, const ca_t x, slong n, ca_ctx_t ctx)
Sets *res* to *x* raised to the power *n*. Whereas :func:`ca_pow`,
:func:`ca_pow_si` etc. may create `x^n` as an extension number
if *n* is large, this function always perform the exponentiation
using field arithmetic.
.. function:: void ca_sqrt_inert(ca_t res, const ca_t x, ca_ctx_t ctx)
void ca_sqrt_nofactor(ca_t res, const ca_t x, ca_ctx_t ctx)
void ca_sqrt_factor(ca_t res, const ca_t x, ulong flags, ca_ctx_t ctx)
void ca_sqrt(ca_t res, const ca_t x, ca_ctx_t ctx)
Sets *res* to the principal square root of *x*.
For special values, the following definitions apply:
* `\sqrt{c \infty} = \sqrt{c} \infty`
* `\sqrt{\tilde \infty} = \tilde \infty`.
* Both *Undefined* and *Unknown* map to themselves.
The *inert* version outputs the generator in the formal field
`\mathbb{Q}(\sqrt{x})` without simplifying.
The *factor* version writes `x = A^2 B` in `K` where `K` is
the field of *x*, and outputs `A \sqrt{B}` or
`-A \sqrt{B}` (whichever gives the correct sign) as an element of
`K(\sqrt{B})` or some subfield thereof.
This factorization is only a heuristic and is not guaranteed
to make `B` minimal.
Factorization options can be passed through to *flags*: see
:func:`ca_factor` for details.
The *nofactor* version will not perform a general factorization, but
may still perform other simplifications. It may in particular attempt to
simplify `\sqrt{x}` to a single element in `\overline{\mathbb{Q}}`.
.. function:: void ca_sqrt_ui(ca_t res, ulong n, ca_ctx_t ctx)
Sets *res* to the principal square root of *n*.
Complex parts
-------------------------------------------------------------------------------
.. function:: void ca_abs(ca_t res, const ca_t x, ca_ctx_t ctx)
Sets *res* to the absolute value of *x*.
For special values, the following definitions apply:
* `|c \infty| = |\tilde \infty| = +\infty`.
* Both *Undefined* and *Unknown* map to themselves.
This function will attempt to simplify its argument through an exact
computation. It may in particular attempt to simplify `|x|` to
a single element in `\overline{\mathbb{Q}}`.
In the generic case, this function outputs an element of the formal
field `\mathbb{Q}(|x|)`.
.. function:: void ca_sgn(ca_t res, const ca_t x, ca_ctx_t ctx)
Sets *res* to the sign of *x*, defined by
.. math::
\operatorname{sgn}(x) = \begin{cases} 0 & x = 0 \\ \frac{x}{|x|} & x \ne 0 \end{cases}
for numbers. For special values, the following definitions apply:
* `\operatorname{sgn}(c \infty) = c`.
* `\operatorname{sgn}(\tilde \infty) = \operatorname{Undefined}`.
* Both *Undefined* and *Unknown* map to themselves.
This function will attempt to simplify its argument through an exact
computation. It may in particular attempt to simplify `\operatorname{sgn}(x)` to
a single element in `\overline{\mathbb{Q}}`.
In the generic case, this function outputs an element of the formal
field `\mathbb{Q}(\operatorname{sgn}(x))`.
.. function:: void ca_csgn(ca_t res, const ca_t x, ca_ctx_t ctx)
Sets *res* to the extension of the real sign function taking the
value 1 for *z* strictly in the right half plane, -1 for *z* strictly
in the left half plane, and the sign of the imaginary part when *z* is on
the imaginary axis. Equivalently, `\operatorname{csgn}(z) = z / \sqrt{z^2}`
except that the value is 0 when *z* is exactly zero.
This function gives *Undefined* for unsigned infinity
and `\operatorname{csgn}(\operatorname{sgn}(c \infty)) = \operatorname{csgn}(c)` for
signed infinities.
.. function:: void ca_arg(ca_t res, const ca_t x, ca_ctx_t ctx)
Sets *res* to the complex argument (phase) of *x*, normalized
to the range `(-\pi, +\pi]`. The argument of 0 is defined as 0.
For special values, the following definitions apply:
* `\operatorname{arg}(c \infty) = \operatorname{arg}(c)`.
* `\operatorname{arg}(\tilde \infty) = \operatorname{Undefined}`.
* Both *Undefined* and *Unknown* map to themselves.
.. function:: void ca_re(ca_t res, const ca_t x, ca_ctx_t ctx)
Sets *res* to the real part of *x*. The result is *Undefined* if *x*
is any infinity (including a real infinity).
.. function:: void ca_im(ca_t res, const ca_t x, ca_ctx_t ctx)
Sets *res* to the imaginary part of *x*. The result is *Undefined* if *x*
is any infinity (including an imaginary infinity).
.. function:: void ca_conj_deep(ca_t res, const ca_t x, ca_ctx_t ctx)
void ca_conj_shallow(ca_t res, const ca_t x, ca_ctx_t ctx)
void ca_conj(ca_t res, const ca_t x, ca_ctx_t ctx)
Sets *res* to the complex conjugate of *x*.
The *shallow* version creates a new extension element
`\overline{x}` unless *x* can be trivially conjugated in-place
in the existing field.
The *deep* version recursively conjugates the extension numbers
in the field of *x*.
.. function:: void ca_floor(ca_t res, const ca_t x, ca_ctx_t ctx)
Sets *res* to the floor function of *x*. The result is *Undefined* if *x*
is any infinity (including a real infinity).
For complex numbers, this is presently defined to take the floor of the
real part.
.. function:: void ca_ceil(ca_t res, const ca_t x, ca_ctx_t ctx)
Sets *res* to the ceiling function of *x*. The result is *Undefined* if *x*
is any infinity (including a real infinity).
For complex numbers, this is presently defined to take the ceiling of the
real part.
Exponentials and logarithms
-------------------------------------------------------------------------------
.. function:: void ca_exp(ca_t res, const ca_t x, ca_ctx_t ctx)
Sets *res* to the exponential function of *x*.
For special values, the following definitions apply:
* `e^{+\infty} = +\infty`
* `e^{c \infty} = \tilde \infty` if `0 < \operatorname{Re}(c) < 1`.
* `e^{c \infty} = 0` if `\operatorname{Re}(c) < 0`.
* `e^{c \infty} = \text{Undefined}` if `\operatorname{Re}(c) = 0`.
* `e^{\tilde \infty} = \text{Undefined}`.
* Both *Undefined* and *Unknown* map to themselves.
The following symbolic simplifications are performed automatically:
* `e^0 = 1`
* `e^{\log(z)} = z`
* `e^{(p/q) \log(z)} = z^{p/q}` (for rational `p/q`)
* `e^{(p/q) \pi i}` = algebraic root of unity (for small rational `p/q`)
In the generic case, this function outputs an element of the formal
field `\mathbb{Q}(e^x)`.
.. function:: void ca_log(ca_t res, const ca_t x, ca_ctx_t ctx)
Sets *res* to the natural logarithm of *x*.
For special values and at the origin, the following definitions apply:
* For any infinity, `\log(c\infty) = \log(\tilde \infty) = +\infty`.
* `\log(0) = -\infty`. The result is *Unknown* if deciding `x = 0` fails.
* Both *Undefined* and *Unknown* map to themselves.
The following symbolic simplifications are performed automatically:
* `\log(1) = 0`
* `\log\left(e^z\right) = z + 2 \pi i k`
* `\log\left(\sqrt{z}\right) = \tfrac{1}{2} \log(z) + 2 \pi i k`
* `\log\left(z^a\right) = a \log(z) + 2 \pi i k`
* `\log(x) = \log(-x) + \pi i` for negative real *x*
In the generic case, this function outputs an element of the formal
field `\mathbb{Q}(\log(x))`.
Trigonometric functions
-------------------------------------------------------------------------------
.. function:: void ca_sin_cos_exponential(ca_t res1, ca_t res2, const ca_t x, ca_ctx_t ctx)
void ca_sin_cos_direct(ca_t res1, ca_t res2, const ca_t x, ca_ctx_t ctx)
void ca_sin_cos_tangent(ca_t res1, ca_t res2, const ca_t x, ca_ctx_t ctx)
void ca_sin_cos(ca_t res1, ca_t res2, const ca_t x, ca_ctx_t ctx)
Sets *res1* to the sine of *x* and *res2* to the cosine of *x*.
Either *res1* or *res2* can be *NULL* to compute only the other function.
Various representations are implemented:
* The *exponential* version expresses the sine and cosine in terms
of complex exponentials. Simple algebraic values will simplify to
rational numbers or elements of cyclotomic fields.
* The *direct* method expresses the sine and cosine in terms of
the original functions (perhaps after applying some symmetry
transformations, which may interchange sin and cos). Extremely
simple algebraic values will automatically simplify to elements
of real algebraic number fields.
* The *tangent* version expresses the sine and cosine in terms
of `\tan(x/2)`, perhaps after applying some symmetry
transformations. Extremely simple algebraic values will
automatically simplify to elements of real algebraic number
fields.
By default, the standard function uses the *exponential*
representation as this typically works best for field arithmetic
and simplifications, although it has the disadvantage of
introducing complex numbers where real numbers would be sufficient.
The behavior of the standard function can be changed using the
:macro:`CA_OPT_TRIG_FORM` context setting.
For special values, the following definitions apply:
* `\sin(\pm i \infty) = \pm i \infty`
* `\cos(\pm i \infty) = +\infty`
* All other infinities give `\operatorname{Undefined}`
.. function:: void ca_sin(ca_t res, const ca_t x, ca_ctx_t ctx)
void ca_cos(ca_t res, const ca_t x, ca_ctx_t ctx)
Sets *res* to the sine or cosine of *x*.
These functions are shortcuts for :func:`ca_sin_cos`.
.. function:: void ca_tan_sine_cosine(ca_t res, const ca_t x, ca_ctx_t ctx)
void ca_tan_exponential(ca_t res, const ca_t x, ca_ctx_t ctx)
void ca_tan_direct(ca_t res, const ca_t x, ca_ctx_t ctx)
void ca_tan(ca_t res, const ca_t x, ca_ctx_t ctx)
Sets *res* to the tangent of *x*.
The *sine_cosine* version evaluates the tangent as a quotient of
a sine and cosine, the *direct* version evaluates it directly
as a tangent (possibly after transforming the variable),
and the *exponential* version evaluates it in terms of complex
exponentials.
Simple algebraic values will automatically simplify to elements
of trigonometric or cyclotomic number fields.
By default, the standard function uses the *exponential*
representation as this typically works best for field arithmetic
and simplifications, although it has the disadvantage of
introducing complex numbers where real numbers would be sufficient.
The behavior of the standard function can be changed using the
:macro:`CA_OPT_TRIG_FORM` context setting.
For special values, the following definitions apply:
* At poles, `\tan((n+\tfrac{1}{2}) \pi) = \tilde \infty`
* `\tan(e^{i \theta} \infty) = +i, \quad 0 < \theta < \pi`
* `\tan(e^{i \theta} \infty) = -i, \quad -\pi < \theta < 0`
* `\tan(\pm \infty) = \tan(\tilde \infty) = \operatorname{Undefined}`
.. function:: void ca_cot(ca_t res, const ca_t x, ca_ctx_t ctx)
Sets *res* to the cotangent *x*. This is equivalent to
computing the reciprocal of the tangent.
.. function:: void ca_atan_logarithm(ca_t res, const ca_t x, ca_ctx_t ctx)
void ca_atan_direct(ca_t res, const ca_t x, ca_ctx_t ctx)
void ca_atan(ca_t res, const ca_t x, ca_ctx_t ctx)
Sets *res* to the inverse tangent of *x*.
The *direct* version expresses the result as an inverse tangent
(possibly after transforming the variable). The *logarithm*
version expresses it in terms of complex logarithms.
Simple algebraic inputs will automatically simplify to
rational multiples of `\pi`.
By default, the standard function uses the *logarithm*
representation as this typically works best for field arithmetic
and simplifications, although it has the disadvantage of
introducing complex numbers where real numbers would be sufficient.
The behavior of the standard function can be changed using the
:macro:`CA_OPT_TRIG_FORM` context setting (exponential mode
results in logarithmic forms).
For special values, the following definitions apply:
* `\operatorname{atan}(\pm i) = \pm i \infty`
* `\operatorname{atan}(c \infty) = \operatorname{csgn}(c) \pi / 2`
* `\operatorname{atan}(\tilde \infty) = \operatorname{Undefined}`
.. function:: void ca_asin_logarithm(ca_t res, const ca_t x, ca_ctx_t ctx)
void ca_acos_logarithm(ca_t res, const ca_t x, ca_ctx_t ctx)
void ca_asin_direct(ca_t res, const ca_t x, ca_ctx_t ctx)
void ca_acos_direct(ca_t res, const ca_t x, ca_ctx_t ctx)
void ca_asin(ca_t res, const ca_t x, ca_ctx_t ctx)
void ca_acos(ca_t res, const ca_t x, ca_ctx_t ctx)
Sets *res* to the inverse sine (respectively, cosine) of *x*.
The *direct* version expresses the result as an inverse sine or
cosine (possibly after transforming the variable). The *logarithm*
version expresses it in terms of complex logarithms.
Simple algebraic inputs will automatically simplify to
rational multiples of `\pi`.
By default, the standard function uses the *logarithm*
representation as this typically works best for field arithmetic
and simplifications, although it has the disadvantage of
introducing complex numbers where real numbers would be sufficient.
The behavior of the standard function can be changed using the
:macro:`CA_OPT_TRIG_FORM` context setting (exponential mode
results in logarithmic forms).
The inverse cosine is presently implemented as
`\operatorname{acos}(x) = \pi/2 - \operatorname{asin}(x)`.
Special functions
-------------------------------------------------------------------------------
.. function:: void ca_gamma(ca_t res, const ca_t x, ca_ctx_t ctx)
Sets *res* to the gamma function of *x*.
.. function:: void ca_erf(ca_t res, const ca_t x, ca_ctx_t ctx)
Sets *res* to the error function of *x*.
.. function:: void ca_erfc(ca_t res, const ca_t x, ca_ctx_t ctx)
Sets *res* to the complementary error function of *x*.
.. function:: void ca_erfi(ca_t res, const ca_t x, ca_ctx_t ctx)
Sets *res* to the imaginary error function of *x*.
Numerical evaluation
-------------------------------------------------------------------------------
.. function:: void ca_get_acb_raw(acb_t res, const ca_t x, slong prec, ca_ctx_t ctx)
Sets *res* to an enclosure of the numerical value of *x*.
A working precision of *prec* bits is used internally for the evaluation,
without adaptive refinement.
If *x* is any special value, *res* is set to *acb_indeterminate*.
.. function:: void ca_get_acb(acb_t res, const ca_t x, slong prec, ca_ctx_t ctx)
void ca_get_acb_accurate_parts(acb_t res, const ca_t x, slong prec, ca_ctx_t ctx)
Sets *res* to an enclosure of the numerical value of *x*.
The working precision is increased adaptively to try to ensure *prec*
accurate bits in the output. The *accurate_parts* version tries to ensure
*prec* accurate bits for both the real and imaginary part separately.
The refinement is stopped if the working precision exceeds
``CA_OPT_PREC_LIMIT`` (or twice the initial precision, if this is larger).
The user may call *acb_rel_accuracy_bits* to check is the calculation
was successful.
The output is not rounded down to *prec* bits (to avoid unnecessary
double rounding); the user may call *acb_set_round* when rounding
is desired.
.. function:: char * ca_get_decimal_str(const ca_t x, slong digits, ulong flags, ca_ctx_t ctx)
Returns a decimal approximation of *x* with precision up to
*digits*. The output is guaranteed to be correct within 1 ulp
in the returned digits, but the number of returned digits may
be smaller than *digits* if the numerical evaluation does
not succeed.
If *flags* is set to 1, attempts to achieve full accuracy for
both the real and imaginary parts separately.
If *x* is not finite or a finite enclosure cannot be produced,
returns the string "?".
The user should free the returned string with ``flint_free``.
Rewriting and simplification
-------------------------------------------------------------------------------
.. function:: void ca_rewrite_complex_normal_form(ca_t res, const ca_t x, int deep, ca_ctx_t ctx)
Sets *res* to *x* rewritten using standardizing transformations
over the complex numbers:
* Elementary functions are rewritten in terms of (complex) exponentials, roots and logarithms
* Complex parts are rewritten using logarithms, square roots, and (deep) complex conjugates
* Algebraic numbers are rewritten in terms of cyclotomic fields where applicable
If *deep* is set, the rewriting is applied recursively to the tower
of extension numbers; otherwise, the rewriting is only applied
to the top-level extension numbers.
The result is not a normal form in the strong sense (the same
number can have many possible representations even after applying
this transformation), but in practice this is a powerful heuristic
for simplification.
Factorization
-------------------------------------------------------------------------------
.. type:: ca_factor_struct
.. type:: ca_factor_t
Represents a real or complex number in factored form
`b_1^{e_1} b_2^{e_2} \cdots b_n^{e_n}` where `b_i` and `e_i`
are :type:`ca_t` numbers (the exponents need not be integers).
.. function:: void ca_factor_init(ca_factor_t fac, ca_ctx_t ctx)
Initializes *fac* and sets it to the empty factorization
(equivalent to the number 1).
.. function:: void ca_factor_clear(ca_factor_t fac, ca_ctx_t ctx)
Clears the factorization structure *fac*.
.. function:: void ca_factor_one(ca_factor_t fac, ca_ctx_t ctx)
Sets *fac* to the empty factorization (equivalent to the number 1).
.. function:: void ca_factor_print(const ca_factor_t fac, ca_ctx_t ctx)
Prints a description of *fac* to standard output.
.. function:: void ca_factor_insert(ca_factor_t fac, const ca_t base, const ca_t exp, ca_ctx_t ctx)
Inserts `b^e` into *fac* where *b* is given by *base* and *e*
is given by *exp*. If a base element structurally identical to *base*
already exists in *fac*, the corresponding exponent is incremented by *exp*;
otherwise, this factor is appended.
.. function:: void ca_factor_get_ca(ca_t res, const ca_factor_t fac, ca_ctx_t ctx)
Expands *fac* back to a single :type:`ca_t` by evaluating the powers
and multiplying out the result.
.. function:: void ca_factor(ca_factor_t res, const ca_t x, ulong flags, ca_ctx_t ctx)
Sets *res* to a factorization of *x*
of the form `x = b_1^{e_1} b_2^{e_2} \cdots b_n^{e_n}`.
Requires that *x* is not a special value.
The type of factorization is controlled by *flags*, which can be set
to a combination of constants in the following section.
Factorization options
................................................................................
The following flags select the structural polynomial factorization to
perform over formal fields `\mathbb{Q}(a_1,\ldots,a_n)`.
Each flag in the list strictly encompasses the factorization power of
the preceding flag, so it is unnecessary to pass more than one flag.
.. macro:: CA_FACTOR_POLY_NONE
No polynomial factorization at all.
.. macro:: CA_FACTOR_POLY_CONTENT
Only extract the rational content.
.. macro:: CA_FACTOR_POLY_SQF
Perform a squarefree factorization in addition to extracting
the rational content.
.. macro:: CA_FACTOR_POLY_FULL
Perform a full multivariate polynomial factorization.
The following flags select the factorization to perform over `\mathbb{Z}`.
Integer factorization is applied if *x* is an element of `\mathbb{Q}`, and to
the extracted rational content of polynomials.
Each flag in the list strictly encompasses the factorization power of
the preceding flag, so it is unnecessary to pass more than one flag.
.. macro:: CA_FACTOR_ZZ_NONE
No integer factorization at all.
.. macro:: CA_FACTOR_ZZ_SMOOTH
Perform a smooth factorization to extract small prime factors
(heuristically up to ``CA_OPT_SMOOTH_LIMIT`` bits) in addition to
identifying perfect powers.
.. macro:: CA_FACTOR_ZZ_FULL
Perform a complete integer factorization into prime numbers.
This is prohibitively slow for general integers exceeding 70-80 digits.
.. _context-options:
Context options
-------------------------------------------------------------------------------
The *options* member of a :type:`ca_ctx_t` object is an array of *slong*
values controlling simplification behavior and various other settings.
The values of the array at the following indices can be changed by the user
(example: ``ctx->options[CA_OPT_PREC_LIMIT] = 65536``).
It is recommended to set options controlling evaluation only at the time
when a context object is created. Changing such options later should
normally be harmless, but since the update will not apply
retroactively to objects that have already been computed and cached,
one might not see the expected behavior.
Superficial options (printing) can be changed at any time.
.. macro:: CA_OPT_VERBOSE
Whether to print debug information. Default value: 0.
.. macro:: CA_OPT_PRINT_FLAGS
Printing style. See :ref:`ca-printing` for details.
Default value: ``CA_PRINT_DEFAULT``.
.. macro:: CA_OPT_MPOLY_ORD
Monomial ordering to use for multivariate polynomials. Possible
values are ``ORD_LEX``, ``ORD_DEGLEX`` and ``ORD_DEGREVLEX``.
Default value: ``ORD_LEX``.
This option must be set before doing any computations.
.. macro:: CA_OPT_PREC_LIMIT
Maximum precision to use internally for numerical evaluation with Arb,
and in some cases for the magntiude of exact coefficients.
This parameter affects the possibility to prove inequalities
and find simplifications between related extension numbers.
This is not a strict limit; some calculations may use higher precision
when there is a good reason to do so.
Default value: 4096.
.. macro:: CA_OPT_QQBAR_DEG_LIMIT
Maximum degree of :type:`qqbar_t` elements allowed internally during
simplification of algebraic numbers. This limit may be exceeded
when the user provides explicit :type:`qqbar_t` input of higher degree.
Default value: 120.
.. macro:: CA_OPT_LOW_PREC
Numerical precision to use for fast checks (typically, before attempting
more expensive operations). Default value: 64.
.. macro:: CA_OPT_SMOOTH_LIMIT
Size in bits for factors in smooth integer factorization. Default value: 32.
.. macro:: CA_OPT_LLL_PREC
Precision to use to find integer relations using LLL. Default value: 128.
.. macro:: CA_OPT_POW_LIMIT
Largest exponent to expand powers automatically. This only applies
in multivariate and transcendental fields: in number fields,
``CA_OPT_PREC_LIMIT`` applies instead. Default value: 20.
.. macro:: CA_OPT_USE_GROEBNER
Boolean flag for whether to use Gröbner basis computation.
This flag and the following limits affect the ability to
prove multivariate identities.
Default value: 1.
.. macro:: CA_OPT_GROEBNER_LENGTH_LIMIT
Maximum length of ideal basis allowed in Buchberger's algorithm.
Default value: 100.
.. macro:: CA_OPT_GROEBNER_POLY_LENGTH_LIMIT
Maximum length of polynomials allowed in Buchberger's algorithm.
Default value: 1000.
.. macro:: CA_OPT_GROEBNER_POLY_BITS_LIMIT
Maximum coefficient size in bits of polynomials allowed in
Buchberger's algorithm.
Default value: 10000.
.. macro:: CA_OPT_VIETA_LIMIT
Maximum degree *n* of algebraic numbers for which to add Vieta's
formulas to the reduction ideal.
This must be set relatively low
since the number of terms in Vieta's formulas is `O(2^n)`
and the resulting Gröbner basis computations can be expensive.
Default value: 6.
.. macro:: CA_OPT_TRIG_FORM
Default representation of trigonometric functions.
The following values are possible:
.. macro:: CA_TRIG_DIRECT
Use the direct functions (with some exceptions).
.. macro:: CA_TRIG_EXPONENTIAL
Use complex exponentials.
.. macro:: CA_TRIG_SINE_COSINE
Use sines and cosines.
.. macro:: CA_TRIG_TANGENT
Use tangents.
Default value: ``CA_TRIG_EXPONENTIAL``.
The *exponential* representation is currently used by default
as typically works best for field arithmetic
and simplifications, although it has the disadvantage of
introducing complex numbers where real numbers would be sufficient.
This may change in the future.
Internal representation
-------------------------------------------------------------------------------
.. macro:: CA_FMPQ(x)
.. macro:: CA_FMPQ_NUMREF(x)
.. macro:: CA_FMPQ_DENREF(x)
Assuming that *x* holds an element of the trivial field `\mathbb{Q}`,
this macro returns a pointer which can be used as an :type:`fmpq_t`,
or respectively to the numerator or denominator as an :type:`fmpz_t`.
.. macro:: CA_MPOLY_Q(x)
Assuming that *x* holds a generic field element as data,
this macro returns a pointer which can be used as
an :type:`fmpz_mpoly_q_t`.
.. macro:: CA_NF_ELEM(x)
Assuming that *x* holds an Antic number field element as data,
this macro returns a pointer which can be used as
an :type:`nf_elem_t`.
.. function:: void _ca_make_field_element(ca_t x, ca_field_srcptr new_index, ca_ctx_t ctx)
Changes the internal representation of *x* to that of an element
of the field with index *new_index* in the context object *ctx*.
This may destroy the value of *x*.
.. function:: void _ca_make_fmpq(ca_t x, ca_ctx_t ctx)
Changes the internal representation of *x* to that of an element of
the trivial field `\mathbb{Q}`. This may destroy the value of *x*.
.. raw:: latex
\newpage
|