File: ca_mat.rst

package info (click to toggle)
flint 3.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 68,996 kB
  • sloc: ansic: 915,350; asm: 14,605; python: 5,340; sh: 4,512; lisp: 2,621; makefile: 787; cpp: 341
file content (622 lines) | stat: -rw-r--r-- 28,952 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
.. _ca-mat:

**ca_mat.h** -- matrices over the real and complex numbers
===============================================================================

A :type:`ca_mat_t` represents a dense matrix over the real or
complex numbers,
implemented as an array of entries of type :type:`ca_struct`.
The dimension (number of rows and columns) of a matrix is fixed at
initialization, and the user must ensure that inputs and outputs to
an operation have compatible dimensions. The number of rows or columns
in a matrix can be zero.

Types, macros and constants
-------------------------------------------------------------------------------

.. type:: ca_mat_struct

.. type:: ca_mat_t

    Contains a pointer to a flat array of the entries (*entries*), an array of
    pointers to the start of each row (*rows*), and the number of rows (*r*)
    and columns (*c*).

    A *ca_mat_t* is defined as an array of length one of type
    *ca_mat_struct*, permitting a *ca_mat_t* to
    be passed by reference.

.. macro:: ca_mat_entry(mat, i, j)

    Macro giving a pointer to the entry at row *i* and column *j*.

.. macro:: ca_mat_nrows(mat)

    Returns the number of rows of the matrix.

.. macro:: ca_mat_ncols(mat)

    Returns the number of columns of the matrix.

.. function:: ca_ptr ca_mat_entry_ptr(ca_mat_t mat, slong i, slong j)

    Returns a pointer to the entry at row *i* and column *j*.
    Equivalent to :macro:`ca_mat_entry` but implemented as a function.

Memory management
-------------------------------------------------------------------------------

.. function:: void ca_mat_init(ca_mat_t mat, slong r, slong c, ca_ctx_t ctx)

    Initializes the matrix, setting it to the zero matrix with *r* rows
    and *c* columns.

.. function:: void ca_mat_clear(ca_mat_t mat, ca_ctx_t ctx)

    Clears the matrix, deallocating all entries.

.. function:: void ca_mat_swap(ca_mat_t mat1, ca_mat_t mat2, ca_ctx_t ctx)

    Efficiently swaps *mat1* and *mat2*.

.. function:: void ca_mat_window_init(ca_mat_t window, const ca_mat_t mat, slong r1, slong c1, slong r2, slong c2, ca_ctx_t ctx)

    Initializes *window* to a window matrix into the submatrix of *mat*
    starting at the corner at row *r1* and column *c1* (inclusive) and ending
    at row *r2* and column *c2* (exclusive).

.. function:: void ca_mat_window_clear(ca_mat_t window, ca_ctx_t ctx)

    Frees the window matrix.

Assignment and conversions
-------------------------------------------------------------------------------

.. function:: void ca_mat_set(ca_mat_t dest, const ca_mat_t src, ca_ctx_t ctx)
              void ca_mat_set_fmpz_mat(ca_mat_t dest, const fmpz_mat_t src, ca_ctx_t ctx)
              void ca_mat_set_fmpq_mat(ca_mat_t dest, const fmpq_mat_t src, ca_ctx_t ctx)

    Sets *dest* to *src*. The operands must have identical dimensions.

.. function:: void ca_mat_set_ca(ca_mat_t mat, const ca_t c, ca_ctx_t ctx)

    Sets *mat* to the matrix with the scalar *c* on the main diagonal
    and zeros elsewhere.

.. function:: void ca_mat_transfer(ca_mat_t res, ca_ctx_t res_ctx, const ca_mat_t src, ca_ctx_t src_ctx)

    Sets *res* to *src* where the corresponding context objects *res_ctx* and
    *src_ctx* may be different.

    This operation preserves the mathematical value represented by *src*,
    but may result in a different internal representation depending on the
    settings of the context objects.


Random generation
-------------------------------------------------------------------------------

.. function:: void ca_mat_randtest(ca_mat_t mat, flint_rand_t state, slong depth, slong bits, ca_ctx_t ctx)

    Sets *mat* to a random matrix with entries having complexity up to
    *depth* and *bits* (see :func:`ca_randtest`).

.. function:: void ca_mat_randtest_rational(ca_mat_t mat, flint_rand_t state, slong bits, ca_ctx_t ctx)

    Sets *mat* to a random rational matrix with entries up to *bits* bits in size.

.. function:: void ca_mat_randops(ca_mat_t mat, flint_rand_t state, slong count, ca_ctx_t ctx)

    Randomizes *mat* in-place by performing elementary row or column operations.
    More precisely, at most count random additions or subtractions of distinct
    rows and columns will be performed. This leaves the rank (and for square matrices,
    the determinant) unchanged.

Input and output
-------------------------------------------------------------------------------

.. function:: void ca_mat_print(const ca_mat_t mat, ca_ctx_t ctx)

    Prints *mat* to standard output. The entries are printed on separate lines.

.. function:: void ca_mat_printn(const ca_mat_t mat, slong digits, ca_ctx_t ctx)

    Prints a decimal representation of *mat* with precision specified by *digits*.
    The entries are comma-separated with square brackets and comma separation
    for the rows.

Special matrices
-------------------------------------------------------------------------------

.. function:: void ca_mat_zero(ca_mat_t mat, ca_ctx_t ctx)

    Sets all entries in *mat* to zero.

.. function:: void ca_mat_one(ca_mat_t mat, ca_ctx_t ctx)

    Sets the entries on the main diagonal of *mat* to one, and
    all other entries to zero.

.. function:: void ca_mat_ones(ca_mat_t mat, ca_ctx_t ctx)

    Sets all entries in *mat* to one.

.. function:: void ca_mat_pascal(ca_mat_t mat, int triangular, ca_ctx_t ctx)

    Sets *mat* to a Pascal matrix, whose entries are binomial coefficients.
    If *triangular* is 0, constructs a full symmetric matrix
    with the rows of Pascal's triangle as successive antidiagonals.
    If *triangular* is 1, constructs the upper triangular matrix with
    the rows of Pascal's triangle as columns, and if *triangular* is -1,
    constructs the lower triangular matrix with the rows of Pascal's
    triangle as rows.

.. function:: void ca_mat_stirling(ca_mat_t mat, int kind, ca_ctx_t ctx)

    Sets *mat* to a Stirling matrix, whose entries are Stirling numbers.
    If *kind* is 0, the entries are set to the unsigned Stirling numbers
    of the first kind. If *kind* is 1, the entries are set to the signed
    Stirling numbers of the first kind. If *kind* is 2, the entries are
    set to the Stirling numbers of the second kind.

.. function:: void ca_mat_hilbert(ca_mat_t mat, ca_ctx_t ctx)

    Sets *mat* to the Hilbert matrix, which has entries `A_{i,j} = 1/(i+j+1)`.

.. function:: void ca_mat_dft(ca_mat_t mat, int type, ca_ctx_t ctx)

    Sets *mat* to the DFT (discrete Fourier transform) matrix of order *n*
    where *n* is the smallest dimension of *mat* (if *mat* is not square,
    the matrix is extended periodically along the larger dimension).
    The *type* parameter selects between four different versions
    of the DFT matrix (in which `\omega = e^{2\pi i/n}`):

    * Type 0 -- entries `A_{j,k} = \omega^{-jk}`
    * Type 1 -- entries `A_{j,k} = \omega^{jk} / n`
    * Type 2 -- entries `A_{j,k} = \omega^{-jk} / \sqrt{n}`
    * Type 3 -- entries `A_{j,k} = \omega^{jk} / \sqrt{n}`

    The type 0 and 1 matrices are inverse pairs, and similarly for the
    type 2 and 3 matrices.

Comparisons and properties
-------------------------------------------------------------------------------

.. function:: truth_t ca_mat_check_equal(const ca_mat_t A, const ca_mat_t B, ca_ctx_t ctx)

    Compares *A* and *B* for equality.

.. function:: truth_t ca_mat_check_is_zero(const ca_mat_t A, ca_ctx_t ctx)

    Tests if *A* is the zero matrix.

.. function:: truth_t ca_mat_check_is_one(const ca_mat_t A, ca_ctx_t ctx)

    Tests if *A* has ones on the main diagonal and zeros elsewhere.

Conjugate and transpose
-------------------------------------------------------------------------------

.. function:: void ca_mat_transpose(ca_mat_t res, const ca_mat_t A, ca_ctx_t ctx)

    Sets *res* to the transpose of *A*. The operands must have
    compatible dimensions. Aliasing is allowed for square matrices.

.. function:: void ca_mat_conj(ca_mat_t res, const ca_mat_t A, ca_ctx_t ctx)

    Sets *res* to the entrywise complex conjugate of *A*.

.. function:: void ca_mat_conj_transpose(ca_mat_t res, const ca_mat_t A, ca_ctx_t ctx)

    Sets *res* to the conjugate transpose (Hermitian transpose) of *A*.

Arithmetic
-------------------------------------------------------------------------------

.. function:: void ca_mat_neg(ca_mat_t res, const ca_mat_t A, ca_ctx_t ctx)

    Sets *res* to the negation of *A*.

.. function:: void ca_mat_add(ca_mat_t res, const ca_mat_t A, const ca_mat_t B, ca_ctx_t ctx)

    Sets *res* to the sum of *A* and *B*.

.. function:: void ca_mat_sub(ca_mat_t res, const ca_mat_t A, const ca_mat_t B, ca_ctx_t ctx)

    Sets *res* to the difference of *A* and *B*.


.. function:: void ca_mat_mul_classical(ca_mat_t res, const ca_mat_t A, const ca_mat_t B, ca_ctx_t ctx)
              void ca_mat_mul_same_nf(ca_mat_t res, const ca_mat_t A, const ca_mat_t B, ca_field_t K, ca_ctx_t ctx)
              void ca_mat_mul(ca_mat_t res, const ca_mat_t A, const ca_mat_t B, ca_ctx_t ctx)

    Sets *res* to the matrix product of *A* and *B*.
    The *classical* version uses classical multiplication.
    The *same_nf* version assumes (not checked) that both *A* and *B*
    have coefficients in the same simple algebraic number field *K*
    or in `\mathbb{Q}`.
    The default version chooses an algorithm automatically.

.. function:: void ca_mat_mul_si(ca_mat_t B, const ca_mat_t A, slong c, ca_ctx_t ctx)
              void ca_mat_mul_fmpz(ca_mat_t B, const ca_mat_t A, const fmpz_t c, ca_ctx_t ctx)
              void ca_mat_mul_fmpq(ca_mat_t B, const ca_mat_t A, const fmpq_t c, ca_ctx_t ctx)
              void ca_mat_mul_ca(ca_mat_t B, const ca_mat_t A, const ca_t c, ca_ctx_t ctx)

    Sets *B* to *A* multiplied by the scalar *c*.

.. function:: void ca_mat_div_si(ca_mat_t B, const ca_mat_t A, slong c, ca_ctx_t ctx)
              void ca_mat_div_fmpz(ca_mat_t B, const ca_mat_t A, const fmpz_t c, ca_ctx_t ctx)
              void ca_mat_div_fmpq(ca_mat_t B, const ca_mat_t A, const fmpq_t c, ca_ctx_t ctx)
              void ca_mat_div_ca(ca_mat_t B, const ca_mat_t A, const ca_t c, ca_ctx_t ctx)

    Sets *B* to *A* divided by the scalar *c*.

.. function:: void ca_mat_add_ca(ca_mat_t B, const ca_mat_t A, const ca_t c, ca_ctx_t ctx)
              void ca_mat_sub_ca(ca_mat_t B, const ca_mat_t A, const ca_t c, ca_ctx_t ctx)

    Sets *B* to *A* plus or minus the scalar *c* (interpreted as a diagonal matrix).

.. function:: void ca_mat_addmul_ca(ca_mat_t B, const ca_mat_t A, const ca_t c, ca_ctx_t ctx)
              void ca_mat_submul_ca(ca_mat_t B, const ca_mat_t A, const ca_t c, ca_ctx_t ctx)

    Sets the matrix *B* to *B* plus (or minus) the matrix *A* multiplied by the scalar *c*.


Powers
-------------------------------------------------------------------------------

.. function:: void ca_mat_sqr(ca_mat_t B, const ca_mat_t A, ca_ctx_t ctx)

    Sets *B* to the square of *A*.

.. function:: void ca_mat_pow_ui_binexp(ca_mat_t B, const ca_mat_t A, ulong exp, ca_ctx_t ctx)

    Sets *B* to *A* raised to the power *exp*, evaluated using
    binary exponentiation.


Polynomial evaluation
-------------------------------------------------------------------------------

.. function:: void _ca_mat_ca_poly_evaluate(ca_mat_t res, ca_srcptr poly, slong len, const ca_mat_t A, ca_ctx_t ctx)
              void ca_mat_ca_poly_evaluate(ca_mat_t res, const ca_poly_t poly, const ca_mat_t A, ca_ctx_t ctx)

    Sets *res* to `f(A)` where *f* is the polynomial given by *poly*
    and *A* is a square matrix. Uses the Paterson-Stockmeyer algorithm.

Gaussian elimination and LU decomposition
-------------------------------------------------------------------------------

.. function:: truth_t ca_mat_find_pivot(slong * pivot_row, ca_mat_t mat, slong start_row, slong end_row, slong column, ca_ctx_t ctx)

    Attempts to find a nonzero entry in *mat* with column index *column*
    and row index between *start_row* (inclusive) and *end_row* (exclusive).

    If the return value is ``T_TRUE``, such an element exists,
    and *pivot_row* is set to the row index.
    If the return value is ``T_FALSE``, no such element exists
    (all entries in this part of the column are zero).
    If the return value is ``T_UNKNOWN``, it is unknown whether such
    an element exists (zero certification failed).

    This function is destructive: any elements that are nontrivially
    zero but can be certified zero will be overwritten by exact zeros.

.. function:: int ca_mat_lu_classical(slong * rank, slong * P, ca_mat_t LU, const ca_mat_t A, int rank_check, ca_ctx_t ctx)
              int ca_mat_lu_recursive(slong * rank, slong * P, ca_mat_t LU, const ca_mat_t A, int rank_check, ca_ctx_t ctx)
              int ca_mat_lu(slong * rank, slong * P, ca_mat_t LU, const ca_mat_t A, int rank_check, ca_ctx_t ctx)

    Computes a generalized LU decomposition `A = PLU` of a given
    matrix *A*, writing the rank of *A* to *rank*.

    If *A* is a nonsingular square matrix, *LU* will be set to
    a unit diagonal lower triangular matrix *L* and an upper
    triangular matrix *U* (the diagonal of *L* will not be stored
    explicitly).

    If *A* is an arbitrary matrix of rank *r*, *U* will be in row
    echelon form having *r* nonzero rows, and *L* will be lower
    triangular but truncated to *r* columns, having implicit ones on
    the *r* first entries of the main diagonal. All other entries will
    be zero.

    If a nonzero value for ``rank_check`` is passed, the function
    will abandon the output matrix in an undefined state and set
    the rank to 0 if *A* is detected to be rank-deficient.

    The algorithm can fail if it fails to certify that a pivot
    element is zero or nonzero, in which case the correct rank
    cannot be determined.
    The return value is 1 on success and 0 on failure. On failure,
    the data in the output variables
    ``rank``, ``P`` and ``LU`` will be meaningless.

    The *classical* version uses iterative Gaussian elimination.
    The *recursive* version uses a block recursive algorithm
    to take advantage of fast matrix multiplication.

.. function:: int ca_mat_fflu(slong * rank, slong * P, ca_mat_t LU, ca_t den, const ca_mat_t A, int rank_check, ca_ctx_t ctx)
    
    Similar to :func:`ca_mat_lu`, but computes a fraction-free
    LU decomposition using the Bareiss algorithm.
    The denominator is written to *den*.
    Note that despite being "fraction-free", this algorithm may
    introduce fractions due to incomplete symbolic simplifications.

.. function:: truth_t ca_mat_nonsingular_lu(slong * P, ca_mat_t LU, const ca_mat_t A, ca_ctx_t ctx)

    Wrapper for :func:`ca_mat_lu`.
    If *A* can be proved to be invertible/nonsingular, returns ``T_TRUE`` and sets *P* and *LU* to a LU decomposition `A = PLU`.
    If *A* can be proved to be singular, returns ``T_FALSE``.
    If *A* cannot be proved to be either singular or nonsingular, returns ``T_UNKNOWN``.
    When the return value is ``T_FALSE`` or ``T_UNKNOWN``, the
    LU factorization is not completed and the values of
    *P* and *LU* are arbitrary.

.. function:: truth_t ca_mat_nonsingular_fflu(slong * P, ca_mat_t LU, ca_t den, const ca_mat_t A, ca_ctx_t ctx)

    Wrapper for :func:`ca_mat_fflu`.
    Similar to :func:`ca_mat_nonsingular_lu`, but computes a fraction-free
    LU decomposition using the Bareiss algorithm.
    The denominator is written to *den*.
    Note that despite being "fraction-free", this algorithm may
    introduce fractions due to incomplete symbolic simplifications.

Solving and inverse
-------------------------------------------------------------------------------

.. function:: truth_t ca_mat_inv(ca_mat_t X, const ca_mat_t A, ca_ctx_t ctx)

    Determines if the square matrix *A* is nonsingular, and if successful,
    sets `X = A^{-1}` and returns ``T_TRUE``.
    Returns ``T_FALSE`` if *A* is singular, and ``T_UNKNOWN`` if the
    rank of *A* cannot be determined.

.. function:: truth_t ca_mat_nonsingular_solve_adjugate(ca_mat_t X, const ca_mat_t A, const ca_mat_t B, ca_ctx_t ctx)
              truth_t ca_mat_nonsingular_solve_fflu(ca_mat_t X, const ca_mat_t A, const ca_mat_t B, ca_ctx_t ctx)
              truth_t ca_mat_nonsingular_solve_lu(ca_mat_t X, const ca_mat_t A, const ca_mat_t B, ca_ctx_t ctx)
              truth_t ca_mat_nonsingular_solve(ca_mat_t X, const ca_mat_t A, const ca_mat_t B, ca_ctx_t ctx)

    Determines if the square matrix *A* is nonsingular, and if successful,
    solves `AX = B` and returns ``T_TRUE``.
    Returns ``T_FALSE`` if *A* is singular, and ``T_UNKNOWN`` if the
    rank of *A* cannot be determined.

.. function:: void ca_mat_solve_tril_classical(ca_mat_t X, const ca_mat_t L, const ca_mat_t B, int unit, ca_ctx_t ctx)
              void ca_mat_solve_tril_recursive(ca_mat_t X, const ca_mat_t L, const ca_mat_t B, int unit, ca_ctx_t ctx)
              void ca_mat_solve_tril(ca_mat_t X, const ca_mat_t L, const ca_mat_t B, int unit, ca_ctx_t ctx)
              void ca_mat_solve_triu_classical(ca_mat_t X, const ca_mat_t U, const ca_mat_t B, int unit, ca_ctx_t ctx)
              void ca_mat_solve_triu_recursive(ca_mat_t X, const ca_mat_t U, const ca_mat_t B, int unit, ca_ctx_t ctx)
              void ca_mat_solve_triu(ca_mat_t X, const ca_mat_t U, const ca_mat_t B, int unit, ca_ctx_t ctx)

    Solves the lower triangular system `LX = B` or the upper triangular system
    `UX = B`, respectively. It is assumed (not checked) that the diagonal
    entries are nonzero. If *unit* is set, the main diagonal of *L* or *U*
    is taken to consist of all ones, and in that case the actual entries on
    the diagonal are not read at all and can contain other data.

    The *classical* versions perform the computations iteratively while the
    *recursive* versions perform the computations in a block recursive
    way to benefit from fast matrix multiplication. The default versions
    choose an algorithm automatically.

.. function:: void ca_mat_solve_fflu_precomp(ca_mat_t X, const slong * perm, const ca_mat_t A, const ca_t den, const ca_mat_t B, ca_ctx_t ctx)
              void ca_mat_solve_lu_precomp(ca_mat_t X, const slong * P, const ca_mat_t LU, const ca_mat_t B, ca_ctx_t ctx)

    Solves `AX = B` given the precomputed nonsingular LU decomposition `A = PLU`
    or fraction-free LU decomposition with denominator *den*.
    The matrices `X` and `B` are allowed to be aliased with each other,
    but `X` is not allowed to be aliased with `LU`.

Rank and echelon form
-------------------------------------------------------------------------------

.. function:: int ca_mat_rank(slong * rank, const ca_mat_t A, ca_ctx_t ctx)

    Computes the rank of the matrix *A*. If successful, returns 1 and
    writes the rank to ``rank``. If unsuccessful, returns 0.

.. function:: int ca_mat_rref_fflu(slong * rank, ca_mat_t R, const ca_mat_t A, ca_ctx_t ctx)
              int ca_mat_rref_lu(slong * rank, ca_mat_t R, const ca_mat_t A, ca_ctx_t ctx)
              int ca_mat_rref(slong * rank, ca_mat_t R, const ca_mat_t A, ca_ctx_t ctx)

    Computes the reduced row echelon form (rref) of a given matrix.
    On success, sets *R* to the rref of *A*, writes the rank to
    *rank*, and returns 1. On failure to certify the correct rank,
    returns 0, leaving the data in *rank* and *R* meaningless.

    The *fflu* version computes a fraction-free LU decomposition and
    then converts the output ro rref form. The *lu* version computes a
    regular LU decomposition and then converts the output to rref form.
    The default version uses an automatic algorithm choice and may
    implement additional methods for special cases.

.. function:: int ca_mat_right_kernel(ca_mat_t X, const ca_mat_t A, ca_ctx_t ctx)

    Sets *X* to a basis of the right kernel (nullspace) of *A*.
    The output matrix *X* will be resized in-place to have a number
    of columns equal to the nullity of *A*.
    Returns 1 on success. On failure, returns 0 and leaves the data
    in *X* meaningless.

Determinant and trace
-------------------------------------------------------------------------------

.. function:: void ca_mat_trace(ca_t trace, const ca_mat_t mat, ca_ctx_t ctx)

    Sets *trace* to the sum of the entries on the main diagonal of *mat*.

.. function:: void ca_mat_det_berkowitz(ca_t det, const ca_mat_t A, ca_ctx_t ctx)
              int ca_mat_det_lu(ca_t det, const ca_mat_t A, ca_ctx_t ctx)
              int ca_mat_det_bareiss(ca_t det, const ca_mat_t A, ca_ctx_t ctx)
              void ca_mat_det_cofactor(ca_t det, const ca_mat_t A, ca_ctx_t ctx)
              void ca_mat_det(ca_t det, const ca_mat_t A, ca_ctx_t ctx)

    Sets *det* to the determinant of the square matrix *A*.
    Various algorithms are available:

    * The *berkowitz* version uses the division-free Berkowitz algorithm
      performing `O(n^4)` operations. Since no zero tests are required, it
      is guaranteed to succeed.

    * The *cofactor* version performs cofactor expansion. This is currently
      only supported for matrices up to size 4.

    * The *lu* and *bareiss* versions use rational LU decomposition
      and fraction-free LU decomposition (Bareiss algorithm) respectively,
      requiring `O(n^3)` operations. These algorithms can fail if zero
      certification fails (see :func:`ca_mat_nonsingular_lu`); they
      return 1 for success and 0 for failure.
      Note that the Bareiss algorithm, despite being "fraction-free",
      may introduce fractions due to incomplete symbolic simplifications.

    The default function chooses an algorithm automatically.
    It will, in addition, recognize trivially rational and integer
    matrices and evaluate those determinants using
    :type:`fmpq_mat_t` or :type:`fmpz_mat_t`.

    The various algorithms can produce different symbolic
    forms of the same determinant. Which algorithm performs better
    depends strongly and sometimes
    unpredictably on the structure of the matrix.

.. function:: void ca_mat_adjugate_cofactor(ca_mat_t adj, ca_t det, const ca_mat_t A, ca_ctx_t ctx)
              void ca_mat_adjugate_charpoly(ca_mat_t adj, ca_t det, const ca_mat_t A, ca_ctx_t ctx)
              void ca_mat_adjugate(ca_mat_t adj, ca_t det, const ca_mat_t A, ca_ctx_t ctx)

    Sets *adj* to the adjuate matrix of *A* and *det* to the determinant
    of *A*, both computed simultaneously.
    The *cofactor* version uses cofactor expansion.
    The *charpoly* version computes and
    evaluates the characteristic polynomial.
    The default version uses an automatic algorithm choice.

Characteristic polynomial
-------------------------------------------------------------------------------

.. function:: void _ca_mat_charpoly_berkowitz(ca_ptr cp, const ca_mat_t mat, ca_ctx_t ctx)
              void ca_mat_charpoly_berkowitz(ca_poly_t cp, const ca_mat_t mat, ca_ctx_t ctx)
              int _ca_mat_charpoly_danilevsky(ca_ptr cp, const ca_mat_t mat, ca_ctx_t ctx)
              int ca_mat_charpoly_danilevsky(ca_poly_t cp, const ca_mat_t mat, ca_ctx_t ctx)
              void _ca_mat_charpoly(ca_ptr cp, const ca_mat_t mat, ca_ctx_t ctx)
              void ca_mat_charpoly(ca_poly_t cp, const ca_mat_t mat, ca_ctx_t ctx)

    Sets *poly* to the characteristic polynomial of *mat* which must be
    a square matrix. If the matrix has *n* rows, the underscore method
    requires space for `n + 1` output coefficients.

    The *berkowitz* version uses a division-free algorithm
    requiring `O(n^4)` operations.
    The *danilevsky* version only performs `O(n^3)` operations, but
    performs divisions and needs to check for zero which can fail.
    This version returns 1 on success and 0 on failure.
    The default version chooses an algorithm automatically.

.. function:: int ca_mat_companion(ca_mat_t mat, const ca_poly_t poly, ca_ctx_t ctx)

    Sets *mat* to the companion matrix of *poly*.
    This function verifies that the leading coefficient of *poly*
    is provably nonzero and that the output matrix has the right size,
    returning 1 on success.
    It returns 0 if the leading coefficient of *poly* cannot be
    proved nonzero or if the size of the output matrix does not match.


Eigenvalues and eigenvectors
-------------------------------------------------------------------------------

.. function:: int ca_mat_eigenvalues(ca_vec_t lambda, ulong * exp, const ca_mat_t mat, ca_ctx_t ctx)

    Attempts to compute all complex eigenvalues of the given matrix *mat*.
    On success, returns 1 and sets *lambda* to the distinct eigenvalues
    with corresponding multiplicities in *exp*.
    The eigenvalues are returned in arbitrary order.
    On failure, returns 0 and leaves the values in *lambda* and *exp*
    arbitrary.

    This function effectively computes the characteristic polynomial
    and then calls :type:`ca_poly_roots`.

.. function:: truth_t ca_mat_diagonalization(ca_mat_t D, ca_mat_t P, const ca_mat_t A, ca_ctx_t ctx)

    Matrix diagonalization: attempts to compute a diagonal matrix *D*
    and an invertible matrix *P* such that `A = PDP^{-1}`.
    Returns ``T_TRUE`` if *A* is diagonalizable and the computation
    succeeds, ``T_FALSE`` if *A* is provably not diagonalizable,
    and ``T_UNKNOWN`` if it is unknown whether *A* is diagonalizable.
    If the return value is not ``T_TRUE``, the values in *D* and *P*
    are arbitrary.

Jordan canonical form
-------------------------------------------------------------------------------

.. function:: int ca_mat_jordan_blocks(ca_vec_t lambda, slong * num_blocks, slong * block_lambda, slong * block_size, const ca_mat_t A, ca_ctx_t ctx)

    Computes the blocks of the Jordan canonical form of *A*.
    On success, returns 1 and sets *lambda* to the unique eigenvalues
    of *A*, sets *num_blocks* to the number of Jordan blocks,
    entry *i* of *block_lambda* to the index of the eigenvalue
    in Jordan block *i*, and entry *i* of *block_size* to the size
    of Jordan block *i*. On failure, returns 0, leaving arbitrary
    values in the output variables.
    The user should allocate space in *block_lambda* and *block_size*
    for up to *n* entries where *n* is the size of the matrix.

    The Jordan form is unique up to the ordering of blocks, which
    is arbitrary.

.. function:: void ca_mat_set_jordan_blocks(ca_mat_t mat, const ca_vec_t lambda, slong num_blocks, slong * block_lambda, slong * block_size, ca_ctx_t ctx)

    Sets *mat* to the concatenation of the Jordan blocks
    given in *lambda*, *num_blocks*, *block_lambda* and *block_size*.
    See :func:`ca_mat_jordan_blocks` for an explanation of these
    variables.

.. function:: int ca_mat_jordan_transformation(ca_mat_t mat, const ca_vec_t lambda, slong num_blocks, slong * block_lambda, slong * block_size, const ca_mat_t A, ca_ctx_t ctx)

    Given the precomputed Jordan block decomposition
    (*lambda*, *num_blocks*, *block_lambda*, *block_size*) of the
    square matrix *A*, computes the corresponding transformation
    matrix *P* such that `A = P J P^{-1}`.
    On success, writes *P* to *mat* and returns 1. On failure,
    returns 0, leaving the value of *mat* arbitrary.

.. function:: int ca_mat_jordan_form(ca_mat_t J, ca_mat_t P, const ca_mat_t A, ca_ctx_t ctx)

    Computes the Jordan decomposition `A = P J P^{-1}` of the given
    square matrix *A*. The user can pass *NULL* for the output
    variable *P*, in which case only *J* is computed.
    On success, returns 1. On failure, returns 0, leaving the values
    of *J* and *P* arbitrary.

    This function is a convenience wrapper around
    :func:`ca_mat_jordan_blocks`, :func:`ca_mat_set_jordan_blocks` and
    :func:`ca_mat_jordan_transformation`. For computations with
    the Jordan decomposition, it is often better to use those
    methods directly since they give direct access to the
    spectrum and block structure.

Matrix functions
-------------------------------------------------------------------------------

.. function:: int ca_mat_exp(ca_mat_t res, const ca_mat_t A, ca_ctx_t ctx)

    Matrix exponential: given a square matrix *A*, sets *res* to
    `e^A` and returns 1 on success. If unsuccessful, returns 0,
    leaving the values in *res* arbitrary.

    This function uses Jordan decomposition. The matrix exponential
    always exists, but computation can fail if computing the Jordan
    decomposition fails.

.. function:: truth_t ca_mat_log(ca_mat_t res, const ca_mat_t A, ca_ctx_t ctx)

    Matrix logarithm: given a square matrix *A*, sets *res* to a
    logarithm `\log(A)` and returns ``T_TRUE`` on success.
    If *A* can be proved to have no logarithm, returns ``T_FALSE``.
    If the existence of a logarithm cannot be proved, returns
    ``T_UNKNOWN``.

    This function uses the Jordan decomposition, and the branch of
    the matrix logarithm is defined by taking the principal values
    of the logarithms of all eigenvalues.