File: examples_arb.rst

package info (click to toggle)
flint 3.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 68,996 kB
  • sloc: ansic: 915,350; asm: 14,605; python: 5,340; sh: 4,512; lisp: 2,621; makefile: 787; cpp: 341
file content (846 lines) | stat: -rw-r--r-- 34,486 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
.. _examples-arb:

Arb example programs
===============================================================================

.. highlight:: text

See :ref:`examples` for general information about example programs.
Running::

    make examples

will compile the programs and place the binaries in
``build/examples``. The examples related to the Arb module are
documented below.

pi.c
-------------------------------------------------------------------------------

This program computes `\pi` to an accuracy of roughly *n* decimal digits
by calling the :func:`arb_const_pi` function with a
working precision of roughly `n \log_2(10)` bits.

Sample output, computing `\pi` to one million digits::

    > build/examples/pi 1000000
    precision = 3321933 bits... cpu/wall(s): 0.243 0.244
    virt/peak/res/peak(MB): 24.46 30.44 8.73 14.42
    [3.14159265358979323846{...999959 digits...}42209010610577945815 +/- 1.38e-1000000]

The program prints an interval guaranteed to contain `\pi`, and where
all displayed digits are correct up to an error of plus or minus
one unit in the last place (see :func:`arb_printn`).
By default, only the first and last few digits are printed.
Pass 0 as a second argument to print all digits (or pass *m* to
print *m* + 1 leading and *m* trailing digits, as above with
the default *m* = 20).

The program can optionally compute various other constants, and can
use multiple threads::

    > build/examples/pi 1000000 -threads 4
    precision = 3321933 bits... cpu/wall(s): 0.265 0.147
    virt/peak/res/peak(MB): 241.95 422.15 13.33 17.54
    [3.14159265358979323846{...999959 digits...}42209010610577945815 +/- 1.38e-1000000]
    > build/examples/pi 1000000 -constant e
    precision = 3321933 bits... cpu/wall(s): 0.09 0.09
    virt/peak/res/peak(MB): 25.56 29.19 9.58 13.11
    [2.71828182845904523536{...999959 digits...}01379817644769422819 +/- 1.39e-1000000]

pi_agm.c
-------------------------------------------------------------------------------

This program implements the Brent-Salamin AGM iteration to compute `\pi`.
This algorithm is not used by :func:`arb_const_pi` since the Chudnovsky
algorithm is faster in practice.

    > build/examples/pi_agm 100000
    precision = 332197 bits...
    Iteration 1 / 16: error bound 0.00391
    Iteration 2 / 16: error bound 2.98e-8
    Iteration 3 / 16: error bound 8.67e-19
    Iteration 4 / 16: error bound 1.84e-40
    Iteration 5 / 16: error bound 8.24e-84
    Iteration 6 / 16: error bound 8.28e-171
    Iteration 7 / 16: error bound 4.18e-345
    Iteration 8 / 16: error bound 5.34e-694
    Iteration 9 / 16: error bound 2.18e-1392
    Iteration 10 / 16: error bound 3.62e-2789
    Iteration 11 / 16: error bound 5.01e-5583
    Iteration 12 / 16: error bound 2.39e-11171
    Iteration 13 / 16: error bound 5.46e-22348
    Iteration 14 / 16: error bound 1.42e-44701
    Iteration 15 / 16: error bound 4.82e-89409
    Iteration 16 / 16: error bound 1.38e-178824
    cpu/wall(s): 0.028 0.028
    virt/peak/res/peak(MB): 19.19 19.19 7.17 7.20
    [3.14159265358979323846{...99959 digits...}76742080565549362465 +/- 3.91e-100000]

zeta_zeros.c
-------------------------------------------------------------------------------

This program computes one or several consecutive zeros of the
Riemann zeta function on the critical line::

    > build/examples/zeta_zeros -n 1 -count 10 -digits 30
    1	14.1347251417346937904572519836
    2	21.0220396387715549926284795939
    3	25.0108575801456887632137909926
    4	30.4248761258595132103118975306
    5	32.9350615877391896906623689641
    6	37.5861781588256712572177634807
    7	40.9187190121474951873981269146
    8	43.3270732809149995194961221654
    9	48.0051508811671597279424727494
    10	49.7738324776723021819167846786
    cpu/wall(s): 0.01 0.01
    virt/peak/res/peak(MB): 21.28 21.28 7.29 7.29

Five zeros starting with the millionth::

    > build/examples/zeta_zeros -n 1000000 -count 5 -digits 20
    1000000	600269.67701244495552
    1000001	600270.30109071169866
    1000002	600270.74787059436613
    1000003	600271.48637367364820
    1000004	600271.76148042593778
    cpu/wall(s): 0.03 0.03
    virt/peak/res/peak(MB): 21.41 21.41 7.41 7.41

The program supports the following options::

    zeta_zeros [-n n] [-count n] [-prec n] [-digits n] [-threads n] [-platt] [-noplatt] [-v] [-verbose] [-h] [-help]

With ``-platt``, Platt's algorithm is used, which may be faster when
computing many zeros of large index simultaneously.

bernoulli.c
-------------------------------------------------------------------------------

This program benchmarks computing the nth Bernoulli number exactly::

    > build/examples/bernoulli 1000000 -threads 8
    cpu/wall(s): 27.227 5.836
    virt/peak/res/peak(MB): 573.47 731.39 73.23 165.13

class_poly.c
-------------------------------------------------------------------------------

This program benchmarks computing Hilbert class polynomials::

    > build/examples/class_poly -1000004 -threads 8
    cpu/wall(s): 6.932 1.478
    virt/peak/res/peak(MB): 535.27 653.18 71.02 100.65
    degree = 624, bits = -37823

hilbert_matrix.c
-------------------------------------------------------------------------------

Given an input integer *n*, this program accurately computes the
determinant of the *n* by *n* Hilbert matrix.
Hilbert matrices are notoriously ill-conditioned: although the
entries are close to unit magnitude, the determinant `h_n`
decreases superexponentially (nearly as `1/4^{n^2}`) as
a function of *n*.
This program automatically doubles the working precision
until the ball computed for `h_n` by :func:`arb_mat_det`
does not contain zero.

Sample output::

    $ build/examples/hilbert_matrix 200
    prec=20: [+/- 1.32e-335]
    prec=40: [+/- 1.63e-545]
    prec=80: [+/- 1.30e-933]
    prec=160: [+/- 3.62e-1926]
    prec=320: [+/- 1.81e-4129]
    prec=640: [+/- 3.84e-8838]
    prec=1280: [2.955454297e-23924 +/- 8.29e-23935]
    success!
    cpu/wall(s): 8.494 8.513
    virt/peak/res/peak(MB): 134.98 134.98 111.57 111.57

Called with ``-eig n``, instead of computing the determinant,
the program computes the smallest eigenvalue of the Hilbert matrix
(in fact, it isolates all eigenvalues and prints the smallest eigenvalue)::

    $ build/examples/hilbert_matrix -eig 50
    prec=20: nan
    prec=40: nan
    prec=80: nan
    prec=160: nan
    prec=320: nan
    prec=640: [1.459157797e-74 +/- 2.49e-84]
    success!
    cpu/wall(s): 1.84 1.841
    virt/peak/res/peak(MB): 33.97 33.97 10.51 10.51

keiper_li.c
-------------------------------------------------------------------------------

Given an input integer *n*, this program rigorously computes numerical
values of the Keiper-Li coefficients
`\lambda_0, \ldots, \lambda_n`. The Keiper-Li coefficients
have the property that `\lambda_n > 0` for all `n > 0` if and only if the
Riemann hypothesis is true. This program was used for the record
computations described in [Joh2013]_ (the paper describes
the algorithm in some more detail).

The program takes the following parameters::

    keiper_li n [-prec prec] [-threads num_threads] [-out out_file]

The program prints the first and last few coefficients. It can optionally
write all the computed data to a file. The working precision defaults
to a value that should give all the coefficients to a few digits of
accuracy, but can optionally be set higher (or lower).
On a multicore system, using several threads results in faster
execution.

Sample output::

    > build/examples/keiper_li 1000 -threads 2
    zeta: cpu/wall(s): 0.4 0.244
    virt/peak/res/peak(MB): 167.98 294.69 5.09 7.43
    log: cpu/wall(s): 0.03 0.038
    gamma: cpu/wall(s): 0.02 0.016
    binomial transform: cpu/wall(s): 0.01 0.018
    0: -0.69314718055994530941723212145817656807550013436026 +/- 6.5389e-347
    1: 0.023095708966121033814310247906495291621932127152051 +/- 2.0924e-345
    2: 0.046172867614023335192864243096033943387066108314123 +/- 1.674e-344
    3: 0.0692129735181082679304973488726010689942120263932 +/- 5.0219e-344
    4: 0.092197619873060409647627872409439018065541673490213 +/- 2.0089e-343
    5: 0.11510854289223549048622128109857276671349132303596 +/- 1.0044e-342
    6: 0.13792766871372988290416713700341666356138966078654 +/- 6.0264e-342
    7: 0.16063715965299421294040287257385366292282442046163 +/- 2.1092e-341
    8: 0.18321945964338257908193931774721859848998098273432 +/- 8.4368e-341
    9: 0.20565733870917046170289387421343304741236553410044 +/- 7.5931e-340
    10: 0.22793393631931577436930340573684453380748385942738 +/- 7.5931e-339
    991: 2.3196617961613367928373899656994682562101430813341 +/- 2.461e-11
    992: 2.3203766239254884035349896518332550233162909717288 +/- 9.5363e-11
    993: 2.321092061239733282811659116333262802034375592414 +/- 1.8495e-10
    994: 2.3218073540188462110258826121503870112747188888893 +/- 3.5907e-10
    995: 2.3225217392815185726928702951225314023773358152533 +/- 6.978e-10
    996: 2.3232344485814623873333223609413703912358283071281 +/- 1.3574e-09
    997: 2.3239447114886014522889542667580382034526509232475 +/- 2.6433e-09
    998: 2.3246517591032700808344143240352605148856869322209 +/- 5.1524e-09
    999: 2.3253548275861382119812576052060526988544993162101 +/- 1.0053e-08
    1000: 2.3260531616864664574065046940832238158044982041872 +/- 3.927e-08
    virt/peak/res/peak(MB): 170.18 294.69 7.51 7.51

logistic.c
-------------------------------------------------------------------------------

This program computes the *n*-th iterate of the logistic map defined
by `x_{n+1} = r x_n (1 - x_n)` where `r` and `x_0` are given.
It takes the following parameters::

    logistic n [x_0] [r] [digits]

The inputs `x_0`, *r* and *digits* default to 0.5, 3.75 and 10 respectively.
The computation is automatically restarted with doubled precision
until the result is accurate to *digits* decimal digits.

Sample output::

    > build/examples/logistic 10
    Trying prec=64 bits...success!
    cpu/wall(s): 0 0.001
    x_10 = [0.6453672908 +/- 3.10e-11]

    > build/examples/logistic 100
    Trying prec=64 bits...ran out of accuracy at step 18
    Trying prec=128 bits...ran out of accuracy at step 53
    Trying prec=256 bits...success!
    cpu/wall(s): 0 0
    x_100 = [0.8882939923 +/- 1.60e-11]

    > build/examples/logistic 10000
    Trying prec=64 bits...ran out of accuracy at step 18
    Trying prec=128 bits...ran out of accuracy at step 53
    Trying prec=256 bits...ran out of accuracy at step 121
    Trying prec=512 bits...ran out of accuracy at step 256
    Trying prec=1024 bits...ran out of accuracy at step 525
    Trying prec=2048 bits...ran out of accuracy at step 1063
    Trying prec=4096 bits...ran out of accuracy at step 2139
    Trying prec=8192 bits...ran out of accuracy at step 4288
    Trying prec=16384 bits...ran out of accuracy at step 8584
    Trying prec=32768 bits...success!
    cpu/wall(s): 0.859 0.858
    x_10000 = [0.8242048008 +/- 4.35e-11]

    > build/examples/logistic 1234 0.1 3.99 30
    Trying prec=64 bits...ran out of accuracy at step 0
    Trying prec=128 bits...ran out of accuracy at step 10
    Trying prec=256 bits...ran out of accuracy at step 76
    Trying prec=512 bits...ran out of accuracy at step 205
    Trying prec=1024 bits...ran out of accuracy at step 461
    Trying prec=2048 bits...ran out of accuracy at step 974
    Trying prec=4096 bits...success!
    cpu/wall(s): 0.009 0.009
    x_1234 = [0.256445391958651410579677945635 +/- 3.92e-31]

real_roots.c
-------------------------------------------------------------------------------

This program isolates the roots of a function on the interval `(a,b)`
(where *a* and *b* are input as double-precision literals)
using the routines in the :ref:`arb_calc <arb-calc>` module.
The program takes the following arguments::

    real_roots function a b [-refine d] [-verbose] [-maxdepth n] [-maxeval n] [-maxfound n] [-prec n]

The following functions (specified by an integer code) are implemented:

  * 0 - `Z(x)` (Riemann-Siegel Z-function)
  * 1 - `\sin(x)`
  * 2 - `\sin(x^2)`
  * 3 - `\sin(1/x)`
  * 4 - `\operatorname{Ai}(x)` (Airy function)
  * 5 - `\operatorname{Ai}'(x)` (Airy function)
  * 6 - `\operatorname{Bi}(x)` (Airy function)
  * 7 - `\operatorname{Bi}'(x)` (Airy function)

The following options are available:

  * ``-refine d``: If provided, after isolating the roots, attempt to refine
    the roots to *d* digits of accuracy using a few bisection steps followed
    by Newton's method with adaptive precision, and then print them.

  * ``-verbose``: Print more information.

  * ``-maxdepth n``: Stop searching after *n* recursive subdivisions.

  * ``-maxeval n``: Stop searching after approximately *n* function evaluations
    (the actual number evaluations will be a small multiple of this).

  * ``-maxfound n``: Stop searching after having found *n* isolated roots.

  * ``-prec n``: Working precision to use for the root isolation.

With *function* 0, the program isolates roots of the Riemann zeta function
on the critical line, and guarantees that no roots are missed
(see `zeta_zeros.c` for a far more efficient way to do this)::

    > build/examples/real_roots 0 0.0 50.0 -verbose
    interval: [0, 50]
    maxdepth = 30, maxeval = 100000, maxfound = 100000, low_prec = 30
    found isolated root in: [14.111328125, 14.16015625]
    found isolated root in: [20.99609375, 21.044921875]
    found isolated root in: [25, 25.048828125]
    found isolated root in: [30.419921875, 30.4443359375]
    found isolated root in: [32.91015625, 32.958984375]
    found isolated root in: [37.548828125, 37.59765625]
    found isolated root in: [40.91796875, 40.966796875]
    found isolated root in: [43.310546875, 43.3349609375]
    found isolated root in: [47.998046875, 48.0224609375]
    found isolated root in: [49.755859375, 49.7802734375]
    ---------------------------------------------------------------
    Found roots: 10
    Subintervals possibly containing undetected roots: 0
    Function evaluations: 3058
    cpu/wall(s): 0.202 0.202
    virt/peak/res/peak(MB): 26.12 26.14 2.76 2.76

Find just one root and refine it to approximately 75 digits::

    > build/examples/real_roots 0 0.0 50.0 -maxfound 1 -refine 75
    interval: [0, 50]
    maxdepth = 30, maxeval = 100000, maxfound = 1, low_prec = 30
    refined root (0/8):
    [14.134725141734693790457251983562470270784257115699243175685567460149963429809 +/- 2.57e-76]

    ---------------------------------------------------------------
    Found roots: 1
    Subintervals possibly containing undetected roots: 7
    Function evaluations: 761
    cpu/wall(s): 0.055 0.056
    virt/peak/res/peak(MB): 26.12 26.14 2.75 2.75

Find the first few roots of an Airy function and refine them to 50 digits each::

    > build/examples/real_roots 4 -10 0 -refine 50
    interval: [-10, 0]
    maxdepth = 30, maxeval = 100000, maxfound = 100000, low_prec = 30
    refined root (0/6):
    [-9.022650853340980380158190839880089256524677535156083 +/- 4.85e-52]

    refined root (1/6):
    [-7.944133587120853123138280555798268532140674396972215 +/- 1.92e-52]

    refined root (2/6):
    [-6.786708090071758998780246384496176966053882477393494 +/- 3.84e-52]

    refined root (3/6):
    [-5.520559828095551059129855512931293573797214280617525 +/- 1.05e-52]

    refined root (4/6):
    [-4.087949444130970616636988701457391060224764699108530 +/- 2.46e-52]

    refined root (5/6):
    [-2.338107410459767038489197252446735440638540145672388 +/- 1.48e-52]

    ---------------------------------------------------------------
    Found roots: 6
    Subintervals possibly containing undetected roots: 0
    Function evaluations: 200
    cpu/wall(s): 0.003 0.003
    virt/peak/res/peak(MB): 26.12 26.14 2.24 2.24

Find roots of `\sin(x^2)` on `(0,100)`. The algorithm cannot isolate
the root at `x = 0` (it is at the endpoint of the interval, and in any
case a root of multiplicity higher than one). The failure is reported::

    > build/examples/real_roots 2 0 100
    interval: [0, 100]
    maxdepth = 30, maxeval = 100000, maxfound = 100000, low_prec = 30
    ---------------------------------------------------------------
    Found roots: 3183
    Subintervals possibly containing undetected roots: 1
    Function evaluations: 34058
    cpu/wall(s): 0.032 0.032
    virt/peak/res/peak(MB): 26.32 26.37 2.04 2.04

This does not miss any roots::

    > build/examples/real_roots 2 1 100
    interval: [1, 100]
    maxdepth = 30, maxeval = 100000, maxfound = 100000, low_prec = 30
    ---------------------------------------------------------------
    Found roots: 3183
    Subintervals possibly containing undetected roots: 0
    Function evaluations: 34039
    cpu/wall(s): 0.023 0.023
    virt/peak/res/peak(MB): 26.32 26.37 2.01 2.01

Looking for roots of `\sin(1/x)` on `(0,1)`, the algorithm finds many roots,
but will never find all of them since there are infinitely many::

    > build/examples/real_roots 3 0.0 1.0
    interval: [0, 1]
    maxdepth = 30, maxeval = 100000, maxfound = 100000, low_prec = 30
    ---------------------------------------------------------------
    Found roots: 10198
    Subintervals possibly containing undetected roots: 24695
    Function evaluations: 202587
    cpu/wall(s): 0.171 0.171
    virt/peak/res/peak(MB): 28.39 30.38 4.05 4.05

Remark: the program always computes rigorous containing intervals
for the roots, but the accuracy after refinement could be less than *d* digits.

poly_roots.c
-------------------------------------------------------------------------------

This program finds the complex roots of an integer polynomial
by calling :func:`arb_fmpz_poly_complex_roots`, which in turn calls
:func:`acb_poly_find_roots` with increasing
precision until the roots certainly have been isolated.
The program takes the following arguments::

    poly_roots [-refine d] [-print d] <poly>

    Isolates all the complex roots of a polynomial with integer coefficients.

    If -refine d is passed, the roots are refined to a relative tolerance
    better than 10^(-d). By default, the roots are only computed to sufficient
    accuracy to isolate them. The refinement is not currently done efficiently.

    If -print d is passed, the computed roots are printed to d decimals.
    By default, the roots are not printed.

    The polynomial can be specified by passing the following as <poly>:

    a <n>          Easy polynomial 1 + 2x + ... + (n+1)x^n
    t <n>          Chebyshev polynomial T_n
    u <n>          Chebyshev polynomial U_n
    p <n>          Legendre polynomial P_n
    c <n>          Cyclotomic polynomial Phi_n
    s <n>          Swinnerton-Dyer polynomial S_n
    b <n>          Bernoulli polynomial B_n
    w <n>          Wilkinson polynomial W_n
    e <n>          Taylor series of exp(x) truncated to degree n
    m <n> <m>      The Mignotte-like polynomial x^n + (100x+1)^m, n > m
    coeffs <c0 c1 ... cn>        c0 + c1 x + ... + cn x^n

    Concatenate to multiply polynomials, e.g.: p 5 t 6 coeffs 1 2 3
    for P_5(x)*T_6(x)*(1+2x+3x^2)

This finds the roots of the Wilkinson polynomial with roots at the
positive integers 1, 2, ..., 100::

    > build/examples/poly_roots -print 15 w 100
    computing squarefree factorization...
    cpu/wall(s): 0.001 0.001
    roots with multiplicity 1
    searching for 100 roots, 100 deflated
    prec=32: 0 isolated roots | cpu/wall(s): 0.098 0.098
    prec=64: 0 isolated roots | cpu/wall(s): 0.247 0.247
    prec=128: 0 isolated roots | cpu/wall(s): 0.498 0.497
    prec=256: 0 isolated roots | cpu/wall(s): 0.713 0.713
    prec=512: 100 isolated roots | cpu/wall(s): 0.104 0.105
    done!
    [1.00000000000000 +/- 3e-20]
    [2.00000000000000 +/- 3e-19]
    [3.00000000000000 +/- 1e-19]
    [4.00000000000000 +/- 1e-19]
    [5.00000000000000 +/- 1e-19]
    ...
    [96.0000000000000 +/- 1e-17]
    [97.0000000000000 +/- 1e-17]
    [98.0000000000000 +/- 3e-17]
    [99.0000000000000 +/- 3e-17]
    [100.000000000000 +/- 3e-17]
    cpu/wall(s): 1.664 1.664

This finds the roots of a Bernoulli polynomial which has both real
and complex roots::

    > build/examples/poly_roots -refine 100 -print 20 b 16
    computing squarefree factorization...
    cpu/wall(s): 0.001 0
    roots with multiplicity 1
    searching for 16 roots, 16 deflated
    prec=32: 16 isolated roots | cpu/wall(s): 0.006 0.006
    prec=64: 16 isolated roots | cpu/wall(s): 0.001 0.001
    prec=128: 16 isolated roots | cpu/wall(s): 0.001 0.001
    prec=256: 16 isolated roots | cpu/wall(s): 0.001 0.002
    prec=512: 16 isolated roots | cpu/wall(s): 0.002 0.001
    done!
    [-0.94308706466055783383 +/- 2.02e-21]
    [-0.75534059252067985752 +/- 2.70e-21]
    [-0.24999757119077421009 +/- 4.27e-21]
    [0.24999757152512726002 +/- 4.43e-21]
    [0.75000242847487273998 +/- 4.43e-21]
    [1.2499975711907742101 +/- 1.43e-20]
    [1.7553405925206798575 +/- 1.74e-20]
    [1.9430870646605578338 +/- 3.21e-20]
    [-0.99509334829256233279 +/- 9.42e-22] + [0.44547958157103608805 +/- 3.59e-21]*I
    [-0.99509334829256233279 +/- 9.42e-22] + [-0.44547958157103608805 +/- 3.59e-21]*I
    [1.9950933482925623328 +/- 1.10e-20] + [0.44547958157103608805 +/- 3.59e-21]*I
    [1.9950933482925623328 +/- 1.10e-20] + [-0.44547958157103608805 +/- 3.59e-21]*I
    [-0.92177327714429290564 +/- 4.68e-21] + [-1.0954360955079385542 +/- 1.71e-21]*I
    [-0.92177327714429290564 +/- 4.68e-21] + [1.0954360955079385542 +/- 1.71e-21]*I
    [1.9217732771442929056 +/- 3.54e-20] + [1.0954360955079385542 +/- 1.71e-21]*I
    [1.9217732771442929056 +/- 3.54e-20] + [-1.0954360955079385542 +/- 1.71e-21]*I
    cpu/wall(s): 0.011 0.012

Roots are automatically separated by multiplicity by performing an initial
squarefree factorization::

    > build/examples/poly_roots -print 5 p 5 p 5 t 7 coeffs 1 5 10 10 5 1
    computing squarefree factorization...
    cpu/wall(s): 0 0
    roots with multiplicity 1
    searching for 6 roots, 3 deflated
    prec=32: 3 isolated roots | cpu/wall(s): 0 0.001
    done!
    [-0.97493 +/- 2.10e-6]
    [-0.78183 +/- 1.49e-6]
    [-0.43388 +/- 3.75e-6]
    [0.43388 +/- 3.75e-6]
    [0.78183 +/- 1.49e-6]
    [0.97493 +/- 2.10e-6]
    roots with multiplicity 2
    searching for 4 roots, 2 deflated
    prec=32: 2 isolated roots | cpu/wall(s): 0 0
    done!
    [-0.90618 +/- 1.56e-7]
    [-0.53847 +/- 6.91e-7]
    [0.53847 +/- 6.91e-7]
    [0.90618 +/- 1.56e-7]
    roots with multiplicity 3
    searching for 1 roots, 0 deflated
    prec=32: 0 isolated roots | cpu/wall(s): 0 0
    done!
    0
    roots with multiplicity 5
    searching for 1 roots, 1 deflated
    prec=32: 1 isolated roots | cpu/wall(s): 0 0
    done!
    -1.0000
    cpu/wall(s): 0 0.001

zeta_zeros.c
-------------------------------------------------------------------------------

This program finds the imaginary parts of consecutive nontrivial zeros
of the Riemann zeta function by calling either
:func:`acb_dirichlet_hardy_z_zeros` or
:func:`acb_dirichlet_platt_local_hardy_z_zeros` depending on the height
of the zeros and the number of zeros requested.
The program takes the following arguments::

    zeta_zeros [-n n] [-count n] [-prec n] [-threads n] [-platt] [-noplatt] [-v] [-verbose] [-h] [-help]

    > build/examples/zeta_zeros -n 1048449114 -count 2
    1048449114      [388858886.0022851217767970582 +/- 7.46e-20]
    1048449115      [388858886.0023936897027167201 +/- 7.59e-20]
    cpu/wall(s): 0.255 0.255
    virt/peak/res/peak(MB): 26.77 26.77 7.88 7.88

complex_plot.c
-------------------------------------------------------------------------------

This program plots one of the predefined functions over a complex
interval `[x_a, x_b] + [y_a, y_b]i` using domain coloring, at
a resolution of *xn* times *yn* pixels.

The program takes the parameters::

    complex_plot [-range xa xb ya yb] [-size xn yn] [-color n] [-threads n] <func>

Defaults parameters are `[-10,10] + [-10,10]i` and *xn* = *yn* = 512.

A color function can be selected with -color. Valid options
are 0 (phase=hue, magnitude=brightness) and 1 (phase only,
white-gold-black-blue-white counterclockwise).

The output is written to ``arbplot.ppm``. If you have ImageMagick,
run ``convert arbplot.ppm arbplot.png`` to get a PNG.

Function codes ``<func>`` are:

  * ``gamma``   - Gamma function
  * ``digamma`` - Digamma function
  * ``lgamma``  - Logarithmic gamma function
  * ``zeta``    - Riemann zeta function
  * ``erf``     - Error function
  * ``ai``      - Airy function Ai
  * ``bi``      - Airy function Bi
  * ``besselj`` - Bessel function `J_0`
  * ``bessely`` - Bessel function `Y_0`
  * ``besseli`` - Bessel function `I_0`
  * ``besselk`` - Bessel function `K_0`
  * ``modj``    - Modular j-function
  * ``modeta``  - Dedekind eta function
  * ``barnesg`` - Barnes G-function
  * ``agm``     - Arithmetic geometric mean

The function is just sampled at point values; no attempt is made to resolve
small features by adaptive subsampling.

For example, the following plots the Riemann zeta function around
a portion of the critical strip with imaginary part between 100 and 140::

    > build/examples/complex_plot zeta -range -10 10 100 140 -size 256 512

For parallel computation on a multicore system, use ``-threads n``.

lvalue.c
-------------------------------------------------------------------------------

This program evaluates Dirichlet L-functions. It takes the following input::

    > build/examples/lvalue
    lvalue [-character q n] [-re a] [-im b] [-prec p] [-z] [-deflate] [-len l]

    Print value of Dirichlet L-function at s = a+bi.
    Default a = 0.5, b = 0, p = 53, (q, n) = (1, 0) (Riemann zeta)
    [-z]       - compute Z(s) instead of L(s)
    [-deflate] - remove singular term at s = 1
    [-len l]   - compute l terms in Taylor series at s

Evaluating the Riemann zeta function and
the Dirichlet beta function at `s = 2`::

    > build/examples/lvalue -re 2 -prec 128
    L(s) = [1.64493406684822643647241516664602518922 +/- 4.37e-39]
    cpu/wall(s): 0.001 0.001
    virt/peak/res/peak(MB): 26.86 26.88 2.05 2.05

    > build/examples/lvalue -character 4 3 -re 2 -prec 128
    L(s) = [0.91596559417721901505460351493238411077 +/- 7.86e-39]
    cpu/wall(s): 0.002 0.003
    virt/peak/res/peak(MB): 26.86 26.88 2.31 2.31

Evaluating the L-function for character number 101 modulo 1009
at `s = 1/2` and `s = 1`::

    > build/examples/lvalue -character 1009 101
    L(s) = [-0.459256562383872 +/- 5.24e-16] + [1.346937111206009 +/- 3.03e-16]*I
    cpu/wall(s): 0.012 0.012
    virt/peak/res/peak(MB): 26.86 26.88 2.30 2.30

    > build/examples/lvalue -character 1009 101 -re 1
    L(s) = [0.657952586112728 +/- 6.02e-16] + [1.004145273214022 +/- 3.10e-16]*I
    cpu/wall(s): 0.017 0.018
    virt/peak/res/peak(MB): 26.86 26.88 2.30 2.30

Computing the first few coefficients in the Laurent series of the
Riemann zeta function at `s = 1`::

    > build/examples/lvalue -re 1 -deflate -len 8
    L(s) = [0.577215664901532861 +/- 5.29e-19]
    L'(s) = [0.072815845483676725 +/- 2.68e-19]
    [x^2] L(s+x) = [-0.004845181596436159 +/- 3.87e-19]
    [x^3] L(s+x) = [-0.000342305736717224 +/- 4.20e-19]
    [x^4] L(s+x) = [9.6890419394471e-5 +/- 2.40e-19]
    [x^5] L(s+x) = [-6.6110318108422e-6 +/- 4.51e-20]
    [x^6] L(s+x) = [-3.316240908753e-7 +/- 3.85e-20]
    [x^7] L(s+x) = [1.0462094584479e-7 +/- 7.78e-21]
    cpu/wall(s): 0.003 0.004
    virt/peak/res/peak(MB): 26.86 26.88 2.30 2.30

Evaluating the Riemann zeta function near the first nontrivial root::

    > build/examples/lvalue -re 0.5 -im 14.134725
    L(s) = [1.76743e-8 +/- 1.93e-14] + [-1.110203e-7 +/- 2.84e-14]*I
    cpu/wall(s): 0.001 0.001
    virt/peak/res/peak(MB): 26.86 26.88 2.31 2.31

    > build/examples/lvalue -z -re 14.134725 -prec 200
    Z(s) = [-1.12418349839417533300111494358128257497862927935658e-7 +/- 4.62e-58]
    cpu/wall(s): 0.001 0.001
    virt/peak/res/peak(MB): 26.86 26.88 2.57 2.57

    > build/examples/lvalue -z -re 14.134725 -len 4
    Z(s) = [-1.124184e-7 +/- 7.00e-14]
    Z'(s) = [0.793160414884 +/- 4.09e-13]
    [x^2] Z(s+x) = [0.065164586492 +/- 5.39e-13]
    [x^3] Z(s+x) = [-0.020707762705 +/- 5.37e-13]
    cpu/wall(s): 0.002 0.003
    virt/peak/res/peak(MB): 26.86 26.88 2.57 2.57

lcentral.c
-------------------------------------------------------------------------------

This program computes the central value `L(1/2)` for each Dirichlet L-function
character modulo *q* for each *q* in the range *qmin* to *qmax*. Usage::

    > build/examples/lcentral
    Computes central values (s = 0.5) of Dirichlet L-functions.

    usage: build/examples/lcentral [--quiet] [--check] [--prec <bits>] qmin qmax

The first few values::

    > build/examples/lcentral 1 8
    3,2: [0.48086755769682862618122006324 +/- 7.35e-30]
    4,3: [0.66769145718960917665869092930 +/- 1.62e-30]
    5,2: [0.76374788011728687822451215264 +/- 2.32e-30] + [0.21696476751886069363858659310 +/- 3.06e-30]*I
    5,4: [0.23175094750401575588338366176 +/- 2.21e-30]
    5,3: [0.76374788011728687822451215264 +/- 2.32e-30] + [-0.21696476751886069363858659310 +/- 3.06e-30]*I
    7,3: [0.71394334376831949285993820742 +/- 1.21e-30] + [0.47490218277139938263745243935 +/- 4.52e-30]*I
    7,2: [0.31008936259836766059195052534 +/- 5.29e-30] + [-0.07264193137017790524562171245 +/- 5.48e-30]*I
    7,6: [1.14658566690370833367712697646 +/- 1.95e-30]
    7,4: [0.31008936259836766059195052534 +/- 5.29e-30] + [0.07264193137017790524562171245 +/- 5.48e-30]*I
    7,5: [0.71394334376831949285993820742 +/- 1.21e-30] + [-0.47490218277139938263745243935 +/- 4.52e-30]*I
    8,5: [0.37369171291254730738158695002 +/- 4.01e-30]
    8,3: [1.10042140952554837756713576997 +/- 3.37e-30]
    cpu/wall(s): 0.002 0.003
    virt/peak/res/peak(MB): 26.32 26.34 2.35 2.35

Testing a large *q*::

    > build/examples/lcentral --quiet --check --prec 256 100000 100000
    cpu/wall(s): 1.668 1.667
    virt/peak/res/peak(MB): 35.67 46.66 11.67 22.61

It is conjectured that the central value never vanishes. Running with ``--check``
verifies that the interval certainly is nonzero. This can fail with
insufficient precision::

    > build/examples/lcentral --check --prec 15 100000 100000
    100000,71877: [0.1 +/- 0.0772] + [+/- 0.136]*I
    100000,90629: [2e+0 +/- 0.106] + [+/- 0.920]*I
    100000,28133: [+/- 0.811] + [-2e+0 +/- 0.501]*I
    100000,3141: [0.8 +/- 0.0407] + [-0.1 +/- 0.0243]*I
    100000,53189: [4.0 +/- 0.0826] + [+/- 0.107]*I
    100000,53253: [1.9 +/- 0.0855] + [-3.9 +/- 0.0681]*I
    Value could be zero!
    100000,53381: [+/- 0.0329] + [+/- 0.0413]*I
    Aborted

integrals.c
-------------------------------------------------------------------------------

This program computes integrals using :func:`acb_calc_integrate`.
Invoking the program without parameters shows usage::

    > build/examples/integrals
    Compute integrals using acb_calc_integrate.
    Usage: integrals -i n [-prec p] [-tol eps] [-twice] [...]

    -i n       - compute integral n (0 <= n <= 23), or "-i all"
    -prec p    - precision in bits (default p = 64)
    -goal p    - approximate relative accuracy goal (default p)
    -tol eps   - approximate absolute error goal (default 2^-p)
    -twice     - run twice (to see overhead of computing nodes)
    -heap      - use heap for subinterval queue
    -verbose   - show information
    -verbose2  - show more information
    -deg n     - use quadrature degree up to n
    -eval n    - limit number of function evaluations to n
    -depth n   - limit subinterval queue size to n
    -threads n - use parallel computation with n threads

    Implemented integrals:
    I0 = int_0^100 sin(x) dx
    I1 = 4 int_0^1 1/(1+x^2) dx
    I2 = 2 int_0^{inf} 1/(1+x^2) dx   (using domain truncation)
    I3 = 4 int_0^1 sqrt(1-x^2) dx
    I4 = int_0^8 sin(x+exp(x)) dx
    I5 = int_1^101 floor(x) dx
    I6 = int_0^1 |x^4+10x^3+19x^2-6x-6| exp(x) dx
    I7 = 1/(2 pi i) int zeta(s) ds  (closed path around s = 1)
    I8 = int_0^1 sin(1/x) dx  (slow convergence, use -heap and/or -tol)
    I9 = int_0^1 x sin(1/x) dx  (slow convergence, use -heap and/or -tol)
    I10 = int_0^10000 x^1000 exp(-x) dx
    I11 = int_1^{1+1000i} gamma(x) dx
    I12 = int_{-10}^{10} sin(x) + exp(-200-x^2) dx
    I13 = int_{-1020}^{-1010} exp(x) dx  (use -tol 0 for relative error)
    I14 = int_0^{inf} exp(-x^2) dx   (using domain truncation)
    I15 = int_0^1 sech(10(x-0.2))^2 + sech(100(x-0.4))^4 + sech(1000(x-0.6))^6 dx
    I16 = int_0^8 (exp(x)-floor(exp(x))) sin(x+exp(x)) dx  (use higher -eval)
    I17 = int_0^{inf} sech(x) dx   (using domain truncation)
    I18 = int_0^{inf} sech^3(x) dx   (using domain truncation)
    I19 = int_0^1 -log(x)/(1+x) dx   (using domain truncation)
    I20 = int_0^{inf} x exp(-x)/(1+exp(-x)) dx   (using domain truncation)
    I21 = int_C wp(x)/x^(11) dx   (contour for 10th Laurent coefficient of Weierstrass p-function)
    I22 = N(1000) = count zeros with 0 < t <= 1000 of zeta(s) using argument principle
    I23 = int_0^{1000} W_0(x) dx
    I24 = int_0^pi max(sin(x), cos(x)) dx
    I25 = int_{-1}^1 erf(x/sqrt(0.0002)*0.5+1.5)*exp(-x) dx
    I26 = int_{-10}^10 Ai(x) dx
    I27 = int_0^10 (x-floor(x)-1/2) max(sin(x),cos(x)) dx
    I28 = int_{-1-i}^{-1+i} sqrt(x) dx
    I29 = int_0^{inf} exp(-x^2+ix) dx   (using domain truncation)
    I30 = int_0^{inf} exp(-x) Ai(-x) dx   (using domain truncation)
    I31 = int_0^pi x sin(x) / (1 + cos(x)^2) dx

A few examples::

    build/examples/integrals -i 4
    I4 = int_0^8 sin(x+exp(x)) dx ...
    cpu/wall(s): 0.02 0.02
    I4 = [0.34740017265725 +/- 3.95e-15]

    > build/examples/integrals -i 3 -prec 333 -tol 1e-80
    I3 = 4 int_0^1 sqrt(1-x^2) dx ...
    cpu/wall(s): 0.024 0.024
    I3 = [3.141592653589793238462643383279502884197169399375105820974944592307816406286209 +/- 4.24e-79]

    > build/examples/integrals -i 9 -heap
    I9 = int_0^1 x sin(1/x) dx  (slow convergence, use -heap and/or -tol) ...
    cpu/wall(s): 0.019 0.018
    I9 = [0.3785300 +/- 3.17e-8]

fpwrap.c
-------------------------------------------------------------------------------

This program demonstrates calling the floating-point wrapper::

    > build/examples/fpwrap
    zeta(2) = 1.644934066848226
    zeta(0.5 + 123i) = 0.006252861175594465 + 0.08206030514520983i

functions_benchmark.c
-------------------------------------------------------------------------------

This program benchmarks performance of some standard functions.


.. highlight:: c