1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
|
.. _examples-arb:
Arb example programs
===============================================================================
.. highlight:: text
See :ref:`examples` for general information about example programs.
Running::
make examples
will compile the programs and place the binaries in
``build/examples``. The examples related to the Arb module are
documented below.
pi.c
-------------------------------------------------------------------------------
This program computes `\pi` to an accuracy of roughly *n* decimal digits
by calling the :func:`arb_const_pi` function with a
working precision of roughly `n \log_2(10)` bits.
Sample output, computing `\pi` to one million digits::
> build/examples/pi 1000000
precision = 3321933 bits... cpu/wall(s): 0.243 0.244
virt/peak/res/peak(MB): 24.46 30.44 8.73 14.42
[3.14159265358979323846{...999959 digits...}42209010610577945815 +/- 1.38e-1000000]
The program prints an interval guaranteed to contain `\pi`, and where
all displayed digits are correct up to an error of plus or minus
one unit in the last place (see :func:`arb_printn`).
By default, only the first and last few digits are printed.
Pass 0 as a second argument to print all digits (or pass *m* to
print *m* + 1 leading and *m* trailing digits, as above with
the default *m* = 20).
The program can optionally compute various other constants, and can
use multiple threads::
> build/examples/pi 1000000 -threads 4
precision = 3321933 bits... cpu/wall(s): 0.265 0.147
virt/peak/res/peak(MB): 241.95 422.15 13.33 17.54
[3.14159265358979323846{...999959 digits...}42209010610577945815 +/- 1.38e-1000000]
> build/examples/pi 1000000 -constant e
precision = 3321933 bits... cpu/wall(s): 0.09 0.09
virt/peak/res/peak(MB): 25.56 29.19 9.58 13.11
[2.71828182845904523536{...999959 digits...}01379817644769422819 +/- 1.39e-1000000]
pi_agm.c
-------------------------------------------------------------------------------
This program implements the Brent-Salamin AGM iteration to compute `\pi`.
This algorithm is not used by :func:`arb_const_pi` since the Chudnovsky
algorithm is faster in practice.
> build/examples/pi_agm 100000
precision = 332197 bits...
Iteration 1 / 16: error bound 0.00391
Iteration 2 / 16: error bound 2.98e-8
Iteration 3 / 16: error bound 8.67e-19
Iteration 4 / 16: error bound 1.84e-40
Iteration 5 / 16: error bound 8.24e-84
Iteration 6 / 16: error bound 8.28e-171
Iteration 7 / 16: error bound 4.18e-345
Iteration 8 / 16: error bound 5.34e-694
Iteration 9 / 16: error bound 2.18e-1392
Iteration 10 / 16: error bound 3.62e-2789
Iteration 11 / 16: error bound 5.01e-5583
Iteration 12 / 16: error bound 2.39e-11171
Iteration 13 / 16: error bound 5.46e-22348
Iteration 14 / 16: error bound 1.42e-44701
Iteration 15 / 16: error bound 4.82e-89409
Iteration 16 / 16: error bound 1.38e-178824
cpu/wall(s): 0.028 0.028
virt/peak/res/peak(MB): 19.19 19.19 7.17 7.20
[3.14159265358979323846{...99959 digits...}76742080565549362465 +/- 3.91e-100000]
zeta_zeros.c
-------------------------------------------------------------------------------
This program computes one or several consecutive zeros of the
Riemann zeta function on the critical line::
> build/examples/zeta_zeros -n 1 -count 10 -digits 30
1 14.1347251417346937904572519836
2 21.0220396387715549926284795939
3 25.0108575801456887632137909926
4 30.4248761258595132103118975306
5 32.9350615877391896906623689641
6 37.5861781588256712572177634807
7 40.9187190121474951873981269146
8 43.3270732809149995194961221654
9 48.0051508811671597279424727494
10 49.7738324776723021819167846786
cpu/wall(s): 0.01 0.01
virt/peak/res/peak(MB): 21.28 21.28 7.29 7.29
Five zeros starting with the millionth::
> build/examples/zeta_zeros -n 1000000 -count 5 -digits 20
1000000 600269.67701244495552
1000001 600270.30109071169866
1000002 600270.74787059436613
1000003 600271.48637367364820
1000004 600271.76148042593778
cpu/wall(s): 0.03 0.03
virt/peak/res/peak(MB): 21.41 21.41 7.41 7.41
The program supports the following options::
zeta_zeros [-n n] [-count n] [-prec n] [-digits n] [-threads n] [-platt] [-noplatt] [-v] [-verbose] [-h] [-help]
With ``-platt``, Platt's algorithm is used, which may be faster when
computing many zeros of large index simultaneously.
bernoulli.c
-------------------------------------------------------------------------------
This program benchmarks computing the nth Bernoulli number exactly::
> build/examples/bernoulli 1000000 -threads 8
cpu/wall(s): 27.227 5.836
virt/peak/res/peak(MB): 573.47 731.39 73.23 165.13
class_poly.c
-------------------------------------------------------------------------------
This program benchmarks computing Hilbert class polynomials::
> build/examples/class_poly -1000004 -threads 8
cpu/wall(s): 6.932 1.478
virt/peak/res/peak(MB): 535.27 653.18 71.02 100.65
degree = 624, bits = -37823
hilbert_matrix.c
-------------------------------------------------------------------------------
Given an input integer *n*, this program accurately computes the
determinant of the *n* by *n* Hilbert matrix.
Hilbert matrices are notoriously ill-conditioned: although the
entries are close to unit magnitude, the determinant `h_n`
decreases superexponentially (nearly as `1/4^{n^2}`) as
a function of *n*.
This program automatically doubles the working precision
until the ball computed for `h_n` by :func:`arb_mat_det`
does not contain zero.
Sample output::
$ build/examples/hilbert_matrix 200
prec=20: [+/- 1.32e-335]
prec=40: [+/- 1.63e-545]
prec=80: [+/- 1.30e-933]
prec=160: [+/- 3.62e-1926]
prec=320: [+/- 1.81e-4129]
prec=640: [+/- 3.84e-8838]
prec=1280: [2.955454297e-23924 +/- 8.29e-23935]
success!
cpu/wall(s): 8.494 8.513
virt/peak/res/peak(MB): 134.98 134.98 111.57 111.57
Called with ``-eig n``, instead of computing the determinant,
the program computes the smallest eigenvalue of the Hilbert matrix
(in fact, it isolates all eigenvalues and prints the smallest eigenvalue)::
$ build/examples/hilbert_matrix -eig 50
prec=20: nan
prec=40: nan
prec=80: nan
prec=160: nan
prec=320: nan
prec=640: [1.459157797e-74 +/- 2.49e-84]
success!
cpu/wall(s): 1.84 1.841
virt/peak/res/peak(MB): 33.97 33.97 10.51 10.51
keiper_li.c
-------------------------------------------------------------------------------
Given an input integer *n*, this program rigorously computes numerical
values of the Keiper-Li coefficients
`\lambda_0, \ldots, \lambda_n`. The Keiper-Li coefficients
have the property that `\lambda_n > 0` for all `n > 0` if and only if the
Riemann hypothesis is true. This program was used for the record
computations described in [Joh2013]_ (the paper describes
the algorithm in some more detail).
The program takes the following parameters::
keiper_li n [-prec prec] [-threads num_threads] [-out out_file]
The program prints the first and last few coefficients. It can optionally
write all the computed data to a file. The working precision defaults
to a value that should give all the coefficients to a few digits of
accuracy, but can optionally be set higher (or lower).
On a multicore system, using several threads results in faster
execution.
Sample output::
> build/examples/keiper_li 1000 -threads 2
zeta: cpu/wall(s): 0.4 0.244
virt/peak/res/peak(MB): 167.98 294.69 5.09 7.43
log: cpu/wall(s): 0.03 0.038
gamma: cpu/wall(s): 0.02 0.016
binomial transform: cpu/wall(s): 0.01 0.018
0: -0.69314718055994530941723212145817656807550013436026 +/- 6.5389e-347
1: 0.023095708966121033814310247906495291621932127152051 +/- 2.0924e-345
2: 0.046172867614023335192864243096033943387066108314123 +/- 1.674e-344
3: 0.0692129735181082679304973488726010689942120263932 +/- 5.0219e-344
4: 0.092197619873060409647627872409439018065541673490213 +/- 2.0089e-343
5: 0.11510854289223549048622128109857276671349132303596 +/- 1.0044e-342
6: 0.13792766871372988290416713700341666356138966078654 +/- 6.0264e-342
7: 0.16063715965299421294040287257385366292282442046163 +/- 2.1092e-341
8: 0.18321945964338257908193931774721859848998098273432 +/- 8.4368e-341
9: 0.20565733870917046170289387421343304741236553410044 +/- 7.5931e-340
10: 0.22793393631931577436930340573684453380748385942738 +/- 7.5931e-339
991: 2.3196617961613367928373899656994682562101430813341 +/- 2.461e-11
992: 2.3203766239254884035349896518332550233162909717288 +/- 9.5363e-11
993: 2.321092061239733282811659116333262802034375592414 +/- 1.8495e-10
994: 2.3218073540188462110258826121503870112747188888893 +/- 3.5907e-10
995: 2.3225217392815185726928702951225314023773358152533 +/- 6.978e-10
996: 2.3232344485814623873333223609413703912358283071281 +/- 1.3574e-09
997: 2.3239447114886014522889542667580382034526509232475 +/- 2.6433e-09
998: 2.3246517591032700808344143240352605148856869322209 +/- 5.1524e-09
999: 2.3253548275861382119812576052060526988544993162101 +/- 1.0053e-08
1000: 2.3260531616864664574065046940832238158044982041872 +/- 3.927e-08
virt/peak/res/peak(MB): 170.18 294.69 7.51 7.51
logistic.c
-------------------------------------------------------------------------------
This program computes the *n*-th iterate of the logistic map defined
by `x_{n+1} = r x_n (1 - x_n)` where `r` and `x_0` are given.
It takes the following parameters::
logistic n [x_0] [r] [digits]
The inputs `x_0`, *r* and *digits* default to 0.5, 3.75 and 10 respectively.
The computation is automatically restarted with doubled precision
until the result is accurate to *digits* decimal digits.
Sample output::
> build/examples/logistic 10
Trying prec=64 bits...success!
cpu/wall(s): 0 0.001
x_10 = [0.6453672908 +/- 3.10e-11]
> build/examples/logistic 100
Trying prec=64 bits...ran out of accuracy at step 18
Trying prec=128 bits...ran out of accuracy at step 53
Trying prec=256 bits...success!
cpu/wall(s): 0 0
x_100 = [0.8882939923 +/- 1.60e-11]
> build/examples/logistic 10000
Trying prec=64 bits...ran out of accuracy at step 18
Trying prec=128 bits...ran out of accuracy at step 53
Trying prec=256 bits...ran out of accuracy at step 121
Trying prec=512 bits...ran out of accuracy at step 256
Trying prec=1024 bits...ran out of accuracy at step 525
Trying prec=2048 bits...ran out of accuracy at step 1063
Trying prec=4096 bits...ran out of accuracy at step 2139
Trying prec=8192 bits...ran out of accuracy at step 4288
Trying prec=16384 bits...ran out of accuracy at step 8584
Trying prec=32768 bits...success!
cpu/wall(s): 0.859 0.858
x_10000 = [0.8242048008 +/- 4.35e-11]
> build/examples/logistic 1234 0.1 3.99 30
Trying prec=64 bits...ran out of accuracy at step 0
Trying prec=128 bits...ran out of accuracy at step 10
Trying prec=256 bits...ran out of accuracy at step 76
Trying prec=512 bits...ran out of accuracy at step 205
Trying prec=1024 bits...ran out of accuracy at step 461
Trying prec=2048 bits...ran out of accuracy at step 974
Trying prec=4096 bits...success!
cpu/wall(s): 0.009 0.009
x_1234 = [0.256445391958651410579677945635 +/- 3.92e-31]
real_roots.c
-------------------------------------------------------------------------------
This program isolates the roots of a function on the interval `(a,b)`
(where *a* and *b* are input as double-precision literals)
using the routines in the :ref:`arb_calc <arb-calc>` module.
The program takes the following arguments::
real_roots function a b [-refine d] [-verbose] [-maxdepth n] [-maxeval n] [-maxfound n] [-prec n]
The following functions (specified by an integer code) are implemented:
* 0 - `Z(x)` (Riemann-Siegel Z-function)
* 1 - `\sin(x)`
* 2 - `\sin(x^2)`
* 3 - `\sin(1/x)`
* 4 - `\operatorname{Ai}(x)` (Airy function)
* 5 - `\operatorname{Ai}'(x)` (Airy function)
* 6 - `\operatorname{Bi}(x)` (Airy function)
* 7 - `\operatorname{Bi}'(x)` (Airy function)
The following options are available:
* ``-refine d``: If provided, after isolating the roots, attempt to refine
the roots to *d* digits of accuracy using a few bisection steps followed
by Newton's method with adaptive precision, and then print them.
* ``-verbose``: Print more information.
* ``-maxdepth n``: Stop searching after *n* recursive subdivisions.
* ``-maxeval n``: Stop searching after approximately *n* function evaluations
(the actual number evaluations will be a small multiple of this).
* ``-maxfound n``: Stop searching after having found *n* isolated roots.
* ``-prec n``: Working precision to use for the root isolation.
With *function* 0, the program isolates roots of the Riemann zeta function
on the critical line, and guarantees that no roots are missed
(see `zeta_zeros.c` for a far more efficient way to do this)::
> build/examples/real_roots 0 0.0 50.0 -verbose
interval: [0, 50]
maxdepth = 30, maxeval = 100000, maxfound = 100000, low_prec = 30
found isolated root in: [14.111328125, 14.16015625]
found isolated root in: [20.99609375, 21.044921875]
found isolated root in: [25, 25.048828125]
found isolated root in: [30.419921875, 30.4443359375]
found isolated root in: [32.91015625, 32.958984375]
found isolated root in: [37.548828125, 37.59765625]
found isolated root in: [40.91796875, 40.966796875]
found isolated root in: [43.310546875, 43.3349609375]
found isolated root in: [47.998046875, 48.0224609375]
found isolated root in: [49.755859375, 49.7802734375]
---------------------------------------------------------------
Found roots: 10
Subintervals possibly containing undetected roots: 0
Function evaluations: 3058
cpu/wall(s): 0.202 0.202
virt/peak/res/peak(MB): 26.12 26.14 2.76 2.76
Find just one root and refine it to approximately 75 digits::
> build/examples/real_roots 0 0.0 50.0 -maxfound 1 -refine 75
interval: [0, 50]
maxdepth = 30, maxeval = 100000, maxfound = 1, low_prec = 30
refined root (0/8):
[14.134725141734693790457251983562470270784257115699243175685567460149963429809 +/- 2.57e-76]
---------------------------------------------------------------
Found roots: 1
Subintervals possibly containing undetected roots: 7
Function evaluations: 761
cpu/wall(s): 0.055 0.056
virt/peak/res/peak(MB): 26.12 26.14 2.75 2.75
Find the first few roots of an Airy function and refine them to 50 digits each::
> build/examples/real_roots 4 -10 0 -refine 50
interval: [-10, 0]
maxdepth = 30, maxeval = 100000, maxfound = 100000, low_prec = 30
refined root (0/6):
[-9.022650853340980380158190839880089256524677535156083 +/- 4.85e-52]
refined root (1/6):
[-7.944133587120853123138280555798268532140674396972215 +/- 1.92e-52]
refined root (2/6):
[-6.786708090071758998780246384496176966053882477393494 +/- 3.84e-52]
refined root (3/6):
[-5.520559828095551059129855512931293573797214280617525 +/- 1.05e-52]
refined root (4/6):
[-4.087949444130970616636988701457391060224764699108530 +/- 2.46e-52]
refined root (5/6):
[-2.338107410459767038489197252446735440638540145672388 +/- 1.48e-52]
---------------------------------------------------------------
Found roots: 6
Subintervals possibly containing undetected roots: 0
Function evaluations: 200
cpu/wall(s): 0.003 0.003
virt/peak/res/peak(MB): 26.12 26.14 2.24 2.24
Find roots of `\sin(x^2)` on `(0,100)`. The algorithm cannot isolate
the root at `x = 0` (it is at the endpoint of the interval, and in any
case a root of multiplicity higher than one). The failure is reported::
> build/examples/real_roots 2 0 100
interval: [0, 100]
maxdepth = 30, maxeval = 100000, maxfound = 100000, low_prec = 30
---------------------------------------------------------------
Found roots: 3183
Subintervals possibly containing undetected roots: 1
Function evaluations: 34058
cpu/wall(s): 0.032 0.032
virt/peak/res/peak(MB): 26.32 26.37 2.04 2.04
This does not miss any roots::
> build/examples/real_roots 2 1 100
interval: [1, 100]
maxdepth = 30, maxeval = 100000, maxfound = 100000, low_prec = 30
---------------------------------------------------------------
Found roots: 3183
Subintervals possibly containing undetected roots: 0
Function evaluations: 34039
cpu/wall(s): 0.023 0.023
virt/peak/res/peak(MB): 26.32 26.37 2.01 2.01
Looking for roots of `\sin(1/x)` on `(0,1)`, the algorithm finds many roots,
but will never find all of them since there are infinitely many::
> build/examples/real_roots 3 0.0 1.0
interval: [0, 1]
maxdepth = 30, maxeval = 100000, maxfound = 100000, low_prec = 30
---------------------------------------------------------------
Found roots: 10198
Subintervals possibly containing undetected roots: 24695
Function evaluations: 202587
cpu/wall(s): 0.171 0.171
virt/peak/res/peak(MB): 28.39 30.38 4.05 4.05
Remark: the program always computes rigorous containing intervals
for the roots, but the accuracy after refinement could be less than *d* digits.
poly_roots.c
-------------------------------------------------------------------------------
This program finds the complex roots of an integer polynomial
by calling :func:`arb_fmpz_poly_complex_roots`, which in turn calls
:func:`acb_poly_find_roots` with increasing
precision until the roots certainly have been isolated.
The program takes the following arguments::
poly_roots [-refine d] [-print d] <poly>
Isolates all the complex roots of a polynomial with integer coefficients.
If -refine d is passed, the roots are refined to a relative tolerance
better than 10^(-d). By default, the roots are only computed to sufficient
accuracy to isolate them. The refinement is not currently done efficiently.
If -print d is passed, the computed roots are printed to d decimals.
By default, the roots are not printed.
The polynomial can be specified by passing the following as <poly>:
a <n> Easy polynomial 1 + 2x + ... + (n+1)x^n
t <n> Chebyshev polynomial T_n
u <n> Chebyshev polynomial U_n
p <n> Legendre polynomial P_n
c <n> Cyclotomic polynomial Phi_n
s <n> Swinnerton-Dyer polynomial S_n
b <n> Bernoulli polynomial B_n
w <n> Wilkinson polynomial W_n
e <n> Taylor series of exp(x) truncated to degree n
m <n> <m> The Mignotte-like polynomial x^n + (100x+1)^m, n > m
coeffs <c0 c1 ... cn> c0 + c1 x + ... + cn x^n
Concatenate to multiply polynomials, e.g.: p 5 t 6 coeffs 1 2 3
for P_5(x)*T_6(x)*(1+2x+3x^2)
This finds the roots of the Wilkinson polynomial with roots at the
positive integers 1, 2, ..., 100::
> build/examples/poly_roots -print 15 w 100
computing squarefree factorization...
cpu/wall(s): 0.001 0.001
roots with multiplicity 1
searching for 100 roots, 100 deflated
prec=32: 0 isolated roots | cpu/wall(s): 0.098 0.098
prec=64: 0 isolated roots | cpu/wall(s): 0.247 0.247
prec=128: 0 isolated roots | cpu/wall(s): 0.498 0.497
prec=256: 0 isolated roots | cpu/wall(s): 0.713 0.713
prec=512: 100 isolated roots | cpu/wall(s): 0.104 0.105
done!
[1.00000000000000 +/- 3e-20]
[2.00000000000000 +/- 3e-19]
[3.00000000000000 +/- 1e-19]
[4.00000000000000 +/- 1e-19]
[5.00000000000000 +/- 1e-19]
...
[96.0000000000000 +/- 1e-17]
[97.0000000000000 +/- 1e-17]
[98.0000000000000 +/- 3e-17]
[99.0000000000000 +/- 3e-17]
[100.000000000000 +/- 3e-17]
cpu/wall(s): 1.664 1.664
This finds the roots of a Bernoulli polynomial which has both real
and complex roots::
> build/examples/poly_roots -refine 100 -print 20 b 16
computing squarefree factorization...
cpu/wall(s): 0.001 0
roots with multiplicity 1
searching for 16 roots, 16 deflated
prec=32: 16 isolated roots | cpu/wall(s): 0.006 0.006
prec=64: 16 isolated roots | cpu/wall(s): 0.001 0.001
prec=128: 16 isolated roots | cpu/wall(s): 0.001 0.001
prec=256: 16 isolated roots | cpu/wall(s): 0.001 0.002
prec=512: 16 isolated roots | cpu/wall(s): 0.002 0.001
done!
[-0.94308706466055783383 +/- 2.02e-21]
[-0.75534059252067985752 +/- 2.70e-21]
[-0.24999757119077421009 +/- 4.27e-21]
[0.24999757152512726002 +/- 4.43e-21]
[0.75000242847487273998 +/- 4.43e-21]
[1.2499975711907742101 +/- 1.43e-20]
[1.7553405925206798575 +/- 1.74e-20]
[1.9430870646605578338 +/- 3.21e-20]
[-0.99509334829256233279 +/- 9.42e-22] + [0.44547958157103608805 +/- 3.59e-21]*I
[-0.99509334829256233279 +/- 9.42e-22] + [-0.44547958157103608805 +/- 3.59e-21]*I
[1.9950933482925623328 +/- 1.10e-20] + [0.44547958157103608805 +/- 3.59e-21]*I
[1.9950933482925623328 +/- 1.10e-20] + [-0.44547958157103608805 +/- 3.59e-21]*I
[-0.92177327714429290564 +/- 4.68e-21] + [-1.0954360955079385542 +/- 1.71e-21]*I
[-0.92177327714429290564 +/- 4.68e-21] + [1.0954360955079385542 +/- 1.71e-21]*I
[1.9217732771442929056 +/- 3.54e-20] + [1.0954360955079385542 +/- 1.71e-21]*I
[1.9217732771442929056 +/- 3.54e-20] + [-1.0954360955079385542 +/- 1.71e-21]*I
cpu/wall(s): 0.011 0.012
Roots are automatically separated by multiplicity by performing an initial
squarefree factorization::
> build/examples/poly_roots -print 5 p 5 p 5 t 7 coeffs 1 5 10 10 5 1
computing squarefree factorization...
cpu/wall(s): 0 0
roots with multiplicity 1
searching for 6 roots, 3 deflated
prec=32: 3 isolated roots | cpu/wall(s): 0 0.001
done!
[-0.97493 +/- 2.10e-6]
[-0.78183 +/- 1.49e-6]
[-0.43388 +/- 3.75e-6]
[0.43388 +/- 3.75e-6]
[0.78183 +/- 1.49e-6]
[0.97493 +/- 2.10e-6]
roots with multiplicity 2
searching for 4 roots, 2 deflated
prec=32: 2 isolated roots | cpu/wall(s): 0 0
done!
[-0.90618 +/- 1.56e-7]
[-0.53847 +/- 6.91e-7]
[0.53847 +/- 6.91e-7]
[0.90618 +/- 1.56e-7]
roots with multiplicity 3
searching for 1 roots, 0 deflated
prec=32: 0 isolated roots | cpu/wall(s): 0 0
done!
0
roots with multiplicity 5
searching for 1 roots, 1 deflated
prec=32: 1 isolated roots | cpu/wall(s): 0 0
done!
-1.0000
cpu/wall(s): 0 0.001
zeta_zeros.c
-------------------------------------------------------------------------------
This program finds the imaginary parts of consecutive nontrivial zeros
of the Riemann zeta function by calling either
:func:`acb_dirichlet_hardy_z_zeros` or
:func:`acb_dirichlet_platt_local_hardy_z_zeros` depending on the height
of the zeros and the number of zeros requested.
The program takes the following arguments::
zeta_zeros [-n n] [-count n] [-prec n] [-threads n] [-platt] [-noplatt] [-v] [-verbose] [-h] [-help]
> build/examples/zeta_zeros -n 1048449114 -count 2
1048449114 [388858886.0022851217767970582 +/- 7.46e-20]
1048449115 [388858886.0023936897027167201 +/- 7.59e-20]
cpu/wall(s): 0.255 0.255
virt/peak/res/peak(MB): 26.77 26.77 7.88 7.88
complex_plot.c
-------------------------------------------------------------------------------
This program plots one of the predefined functions over a complex
interval `[x_a, x_b] + [y_a, y_b]i` using domain coloring, at
a resolution of *xn* times *yn* pixels.
The program takes the parameters::
complex_plot [-range xa xb ya yb] [-size xn yn] [-color n] [-threads n] <func>
Defaults parameters are `[-10,10] + [-10,10]i` and *xn* = *yn* = 512.
A color function can be selected with -color. Valid options
are 0 (phase=hue, magnitude=brightness) and 1 (phase only,
white-gold-black-blue-white counterclockwise).
The output is written to ``arbplot.ppm``. If you have ImageMagick,
run ``convert arbplot.ppm arbplot.png`` to get a PNG.
Function codes ``<func>`` are:
* ``gamma`` - Gamma function
* ``digamma`` - Digamma function
* ``lgamma`` - Logarithmic gamma function
* ``zeta`` - Riemann zeta function
* ``erf`` - Error function
* ``ai`` - Airy function Ai
* ``bi`` - Airy function Bi
* ``besselj`` - Bessel function `J_0`
* ``bessely`` - Bessel function `Y_0`
* ``besseli`` - Bessel function `I_0`
* ``besselk`` - Bessel function `K_0`
* ``modj`` - Modular j-function
* ``modeta`` - Dedekind eta function
* ``barnesg`` - Barnes G-function
* ``agm`` - Arithmetic geometric mean
The function is just sampled at point values; no attempt is made to resolve
small features by adaptive subsampling.
For example, the following plots the Riemann zeta function around
a portion of the critical strip with imaginary part between 100 and 140::
> build/examples/complex_plot zeta -range -10 10 100 140 -size 256 512
For parallel computation on a multicore system, use ``-threads n``.
lvalue.c
-------------------------------------------------------------------------------
This program evaluates Dirichlet L-functions. It takes the following input::
> build/examples/lvalue
lvalue [-character q n] [-re a] [-im b] [-prec p] [-z] [-deflate] [-len l]
Print value of Dirichlet L-function at s = a+bi.
Default a = 0.5, b = 0, p = 53, (q, n) = (1, 0) (Riemann zeta)
[-z] - compute Z(s) instead of L(s)
[-deflate] - remove singular term at s = 1
[-len l] - compute l terms in Taylor series at s
Evaluating the Riemann zeta function and
the Dirichlet beta function at `s = 2`::
> build/examples/lvalue -re 2 -prec 128
L(s) = [1.64493406684822643647241516664602518922 +/- 4.37e-39]
cpu/wall(s): 0.001 0.001
virt/peak/res/peak(MB): 26.86 26.88 2.05 2.05
> build/examples/lvalue -character 4 3 -re 2 -prec 128
L(s) = [0.91596559417721901505460351493238411077 +/- 7.86e-39]
cpu/wall(s): 0.002 0.003
virt/peak/res/peak(MB): 26.86 26.88 2.31 2.31
Evaluating the L-function for character number 101 modulo 1009
at `s = 1/2` and `s = 1`::
> build/examples/lvalue -character 1009 101
L(s) = [-0.459256562383872 +/- 5.24e-16] + [1.346937111206009 +/- 3.03e-16]*I
cpu/wall(s): 0.012 0.012
virt/peak/res/peak(MB): 26.86 26.88 2.30 2.30
> build/examples/lvalue -character 1009 101 -re 1
L(s) = [0.657952586112728 +/- 6.02e-16] + [1.004145273214022 +/- 3.10e-16]*I
cpu/wall(s): 0.017 0.018
virt/peak/res/peak(MB): 26.86 26.88 2.30 2.30
Computing the first few coefficients in the Laurent series of the
Riemann zeta function at `s = 1`::
> build/examples/lvalue -re 1 -deflate -len 8
L(s) = [0.577215664901532861 +/- 5.29e-19]
L'(s) = [0.072815845483676725 +/- 2.68e-19]
[x^2] L(s+x) = [-0.004845181596436159 +/- 3.87e-19]
[x^3] L(s+x) = [-0.000342305736717224 +/- 4.20e-19]
[x^4] L(s+x) = [9.6890419394471e-5 +/- 2.40e-19]
[x^5] L(s+x) = [-6.6110318108422e-6 +/- 4.51e-20]
[x^6] L(s+x) = [-3.316240908753e-7 +/- 3.85e-20]
[x^7] L(s+x) = [1.0462094584479e-7 +/- 7.78e-21]
cpu/wall(s): 0.003 0.004
virt/peak/res/peak(MB): 26.86 26.88 2.30 2.30
Evaluating the Riemann zeta function near the first nontrivial root::
> build/examples/lvalue -re 0.5 -im 14.134725
L(s) = [1.76743e-8 +/- 1.93e-14] + [-1.110203e-7 +/- 2.84e-14]*I
cpu/wall(s): 0.001 0.001
virt/peak/res/peak(MB): 26.86 26.88 2.31 2.31
> build/examples/lvalue -z -re 14.134725 -prec 200
Z(s) = [-1.12418349839417533300111494358128257497862927935658e-7 +/- 4.62e-58]
cpu/wall(s): 0.001 0.001
virt/peak/res/peak(MB): 26.86 26.88 2.57 2.57
> build/examples/lvalue -z -re 14.134725 -len 4
Z(s) = [-1.124184e-7 +/- 7.00e-14]
Z'(s) = [0.793160414884 +/- 4.09e-13]
[x^2] Z(s+x) = [0.065164586492 +/- 5.39e-13]
[x^3] Z(s+x) = [-0.020707762705 +/- 5.37e-13]
cpu/wall(s): 0.002 0.003
virt/peak/res/peak(MB): 26.86 26.88 2.57 2.57
lcentral.c
-------------------------------------------------------------------------------
This program computes the central value `L(1/2)` for each Dirichlet L-function
character modulo *q* for each *q* in the range *qmin* to *qmax*. Usage::
> build/examples/lcentral
Computes central values (s = 0.5) of Dirichlet L-functions.
usage: build/examples/lcentral [--quiet] [--check] [--prec <bits>] qmin qmax
The first few values::
> build/examples/lcentral 1 8
3,2: [0.48086755769682862618122006324 +/- 7.35e-30]
4,3: [0.66769145718960917665869092930 +/- 1.62e-30]
5,2: [0.76374788011728687822451215264 +/- 2.32e-30] + [0.21696476751886069363858659310 +/- 3.06e-30]*I
5,4: [0.23175094750401575588338366176 +/- 2.21e-30]
5,3: [0.76374788011728687822451215264 +/- 2.32e-30] + [-0.21696476751886069363858659310 +/- 3.06e-30]*I
7,3: [0.71394334376831949285993820742 +/- 1.21e-30] + [0.47490218277139938263745243935 +/- 4.52e-30]*I
7,2: [0.31008936259836766059195052534 +/- 5.29e-30] + [-0.07264193137017790524562171245 +/- 5.48e-30]*I
7,6: [1.14658566690370833367712697646 +/- 1.95e-30]
7,4: [0.31008936259836766059195052534 +/- 5.29e-30] + [0.07264193137017790524562171245 +/- 5.48e-30]*I
7,5: [0.71394334376831949285993820742 +/- 1.21e-30] + [-0.47490218277139938263745243935 +/- 4.52e-30]*I
8,5: [0.37369171291254730738158695002 +/- 4.01e-30]
8,3: [1.10042140952554837756713576997 +/- 3.37e-30]
cpu/wall(s): 0.002 0.003
virt/peak/res/peak(MB): 26.32 26.34 2.35 2.35
Testing a large *q*::
> build/examples/lcentral --quiet --check --prec 256 100000 100000
cpu/wall(s): 1.668 1.667
virt/peak/res/peak(MB): 35.67 46.66 11.67 22.61
It is conjectured that the central value never vanishes. Running with ``--check``
verifies that the interval certainly is nonzero. This can fail with
insufficient precision::
> build/examples/lcentral --check --prec 15 100000 100000
100000,71877: [0.1 +/- 0.0772] + [+/- 0.136]*I
100000,90629: [2e+0 +/- 0.106] + [+/- 0.920]*I
100000,28133: [+/- 0.811] + [-2e+0 +/- 0.501]*I
100000,3141: [0.8 +/- 0.0407] + [-0.1 +/- 0.0243]*I
100000,53189: [4.0 +/- 0.0826] + [+/- 0.107]*I
100000,53253: [1.9 +/- 0.0855] + [-3.9 +/- 0.0681]*I
Value could be zero!
100000,53381: [+/- 0.0329] + [+/- 0.0413]*I
Aborted
integrals.c
-------------------------------------------------------------------------------
This program computes integrals using :func:`acb_calc_integrate`.
Invoking the program without parameters shows usage::
> build/examples/integrals
Compute integrals using acb_calc_integrate.
Usage: integrals -i n [-prec p] [-tol eps] [-twice] [...]
-i n - compute integral n (0 <= n <= 23), or "-i all"
-prec p - precision in bits (default p = 64)
-goal p - approximate relative accuracy goal (default p)
-tol eps - approximate absolute error goal (default 2^-p)
-twice - run twice (to see overhead of computing nodes)
-heap - use heap for subinterval queue
-verbose - show information
-verbose2 - show more information
-deg n - use quadrature degree up to n
-eval n - limit number of function evaluations to n
-depth n - limit subinterval queue size to n
-threads n - use parallel computation with n threads
Implemented integrals:
I0 = int_0^100 sin(x) dx
I1 = 4 int_0^1 1/(1+x^2) dx
I2 = 2 int_0^{inf} 1/(1+x^2) dx (using domain truncation)
I3 = 4 int_0^1 sqrt(1-x^2) dx
I4 = int_0^8 sin(x+exp(x)) dx
I5 = int_1^101 floor(x) dx
I6 = int_0^1 |x^4+10x^3+19x^2-6x-6| exp(x) dx
I7 = 1/(2 pi i) int zeta(s) ds (closed path around s = 1)
I8 = int_0^1 sin(1/x) dx (slow convergence, use -heap and/or -tol)
I9 = int_0^1 x sin(1/x) dx (slow convergence, use -heap and/or -tol)
I10 = int_0^10000 x^1000 exp(-x) dx
I11 = int_1^{1+1000i} gamma(x) dx
I12 = int_{-10}^{10} sin(x) + exp(-200-x^2) dx
I13 = int_{-1020}^{-1010} exp(x) dx (use -tol 0 for relative error)
I14 = int_0^{inf} exp(-x^2) dx (using domain truncation)
I15 = int_0^1 sech(10(x-0.2))^2 + sech(100(x-0.4))^4 + sech(1000(x-0.6))^6 dx
I16 = int_0^8 (exp(x)-floor(exp(x))) sin(x+exp(x)) dx (use higher -eval)
I17 = int_0^{inf} sech(x) dx (using domain truncation)
I18 = int_0^{inf} sech^3(x) dx (using domain truncation)
I19 = int_0^1 -log(x)/(1+x) dx (using domain truncation)
I20 = int_0^{inf} x exp(-x)/(1+exp(-x)) dx (using domain truncation)
I21 = int_C wp(x)/x^(11) dx (contour for 10th Laurent coefficient of Weierstrass p-function)
I22 = N(1000) = count zeros with 0 < t <= 1000 of zeta(s) using argument principle
I23 = int_0^{1000} W_0(x) dx
I24 = int_0^pi max(sin(x), cos(x)) dx
I25 = int_{-1}^1 erf(x/sqrt(0.0002)*0.5+1.5)*exp(-x) dx
I26 = int_{-10}^10 Ai(x) dx
I27 = int_0^10 (x-floor(x)-1/2) max(sin(x),cos(x)) dx
I28 = int_{-1-i}^{-1+i} sqrt(x) dx
I29 = int_0^{inf} exp(-x^2+ix) dx (using domain truncation)
I30 = int_0^{inf} exp(-x) Ai(-x) dx (using domain truncation)
I31 = int_0^pi x sin(x) / (1 + cos(x)^2) dx
A few examples::
build/examples/integrals -i 4
I4 = int_0^8 sin(x+exp(x)) dx ...
cpu/wall(s): 0.02 0.02
I4 = [0.34740017265725 +/- 3.95e-15]
> build/examples/integrals -i 3 -prec 333 -tol 1e-80
I3 = 4 int_0^1 sqrt(1-x^2) dx ...
cpu/wall(s): 0.024 0.024
I3 = [3.141592653589793238462643383279502884197169399375105820974944592307816406286209 +/- 4.24e-79]
> build/examples/integrals -i 9 -heap
I9 = int_0^1 x sin(1/x) dx (slow convergence, use -heap and/or -tol) ...
cpu/wall(s): 0.019 0.018
I9 = [0.3785300 +/- 3.17e-8]
fpwrap.c
-------------------------------------------------------------------------------
This program demonstrates calling the floating-point wrapper::
> build/examples/fpwrap
zeta(2) = 1.644934066848226
zeta(0.5 + 123i) = 0.006252861175594465 + 0.08206030514520983i
functions_benchmark.c
-------------------------------------------------------------------------------
This program benchmarks performance of some standard functions.
.. highlight:: c
|