File: examples_calcium.rst

package info (click to toggle)
flint 3.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 68,996 kB
  • sloc: ansic: 915,350; asm: 14,605; python: 5,340; sh: 4,512; lisp: 2,621; makefile: 787; cpp: 341
file content (397 lines) | stat: -rw-r--r-- 13,035 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
.. _examples-calcium:

Calcium example programs
===============================================================================

.. highlight:: text

See :ref:`examples` for general information about example programs.
Running::

    make examples

will compile the programs and place the binaries in
``build/examples``. The examples related to the Calcium module are
documented below.

elementary.c
-------------------------------------------------------------------------------

This program evaluates several elementary expressions.
For some inputs,
Calcium's arithmetic should produce
a simplified result automatically.
Some inputs do not yet automatically simplify as much
as one might hope.
Calcium may still able to prove that such a number is zero or nonzero;
the output of :func:`ca_check_is_zero` is then ``T_TRUE`` or ``T_FALSE``.

Sample output::

    > build/examples/elementary
    >>> Exp(Pi*I) + 1
    0

    >>> Log(-1) / (Pi*I)
    1

    >>> Log(-I) / (Pi*I)
    -0.500000 {-1/2}

    >>> Log(1 / 10^123) / Log(100)
    -61.5000 {-123/2}

    >>> Log(1 + Sqrt(2)) / Log(3 + 2*Sqrt(2))
    0.500000 {1/2}

    >>> Sqrt(2)*Sqrt(3) - Sqrt(6)
    0

    >>> Exp(1+Sqrt(2)) * Exp(1-Sqrt(2)) / (Exp(1)^2)
    1

    >>> I^I - Exp(-Pi/2)
    0

    >>> Exp(Sqrt(3))^2 - Exp(Sqrt(12))
    0

    >>> 2*Log(Pi*I) - 4*Log(Sqrt(Pi)) - Pi*I
    0

    >>> -I*Pi/8*Log(2/3-2*I/3)^2 + I*Pi/8*Log(2/3+2*I/3)^2 + Pi^2/12*Log(-1-I) + Pi^2/12*Log(-1+I) + Pi^2/12*Log(1/3-I/3) + Pi^2/12*Log(1/3+I/3) - Pi^2/48*Log(18)
    0

    >>> Sqrt(5 + 2*Sqrt(6)) - Sqrt(2) - Sqrt(3)
    0e-1126 {a-c-d where a = 3.14626 [Sqrt(9.89898 {2*b+5})], b = 2.44949 [b^2-6=0], c = 1.73205 [c^2-3=0], d = 1.41421 [d^2-2=0]}
    >>> Is zero?
    T_TRUE

    >>> Sqrt(I) - (1+I)/Sqrt(2)
    0e-1126 + 0e-1126*I {(2*a-b*c-b)/2 where a = 0.707107 + 0.707107*I [Sqrt(1.00000*I {c})], b = 1.41421 [b^2-2=0], c = I [c^2+1=0]}
    >>> Is zero?
    T_TRUE

    >>> Exp(Pi*Sqrt(163)) - (640320^3 + 744)
    -7.49927e-13 {a-262537412640768744 where a = 2.62537e+17 [Exp(40.1092 {b*c})], b = 3.14159 [Pi], c = 12.7671 [c^2-163=0]}

    >>> Erf(2*Log(Sqrt(1/2-Sqrt(2)/4))+Log(4)) - Erf(Log(2-Sqrt(2)))
    0


    cpu/wall(s): 0.022 0.022
    virt/peak/res/peak(MB): 36.45 36.47 9.37 9.37


binet.c
-------------------------------------------------------------------------------

This program computes the *n*-th Fibonacci number using Binet's formula
`F_n = (\varphi^n - (1-\varphi)^n)/\sqrt{5}` where
`\varphi = \tfrac{1}{2} (1+\sqrt{5})`. The program takes *n* as input.

Sample output::

    > build/examples/binet 250
    7.89633e+51 {7896325826131730509282738943634332893686268675876375}

    cpu/wall(s): 0.002 0.001
    virt/peak/res/peak(MB): 36.14 36.14 5.81 5.81

This illustrates exact arithmetic in algebraic number fields.
The program also illustrates another aspect of Calcium arithmetic:
evaluation limits. For example, trying
to compute the index `n = 10^6`
Fibonacci number hits an evaluation limit, so the value is
not expanded to an explicit integer::

    > build/examples/binet 1000000
    1.95328e+208987 {(a*c-b*c)/5 where a = 4.36767e+208987 [Pow(1.61803 {(c+1)/2}, 1.00000e+6 {1000000})], b = 2.28955e-208988 [Pow(-0.618034 {(-c+1)/2}, 1.00000e+6 {1000000})], c = 2.23607 [c^2-5=0]}

    cpu/wall(s): 0.006 0.005
    virt/peak/res/peak(MB): 36.14 36.14 9.05 9.05

Calling the program with ``-limit B n`` raises the bit evaluation
limit to *B*. Setting this large enough allows `F_{10^6}` to expand
to an integer (the following output has been truncated to avoid
reproducing all 208988 digits)::

    > build/examples/binet -limit 10000000 1000000
    1.95328e+208987 {1953282128...8242546875}

    cpu/wall(s): 0.229 0.242
    virt/peak/res/peak(MB): 36.79 37.29 7.13 7.13

The exact mechanisms and interfaces for evaluation limits are still a
work in progress.

machin.c
-------------------------------------------------------------------------------

This program checks several variations of Machin's formula

.. math::

    \frac{\pi}{4} = 4 \operatorname{atan}\left(\frac{1}{5}\right) - \operatorname{atan}\left(\frac{1}{239}\right)

expressing `\pi` or logarithms of small integers in terms of
arctangents or hyperbolic arctangents of rational numbers.
The program actually evaluates
`4 \operatorname{atan}\left(\tfrac{1}{5}\right) - \operatorname{atan}\left(\tfrac{1}{239}\right) - \tfrac{\pi}{4}`
(etc.) and prints the result, which should be precisely 0, proving the identity.
Inverse trigonometric functions are not yet implemented in Calcium,
so the example program evaluates them using logarithms.

Sample output::

    > build/examples/machin
    [(1)*Atan(1/1) - Pi/4]   =   0
    [(1)*Atan(1/2) + (1)*Atan(1/3) - Pi/4]   =   0
    [(2)*Atan(1/2) + (-1)*Atan(1/7) - Pi/4]   =   0
    [(2)*Atan(1/3) + (1)*Atan(1/7) - Pi/4]   =   0
    [(4)*Atan(1/5) + (-1)*Atan(1/239) - Pi/4]   =   0
    [(1)*Atan(1/2) + (1)*Atan(1/5) + (1)*Atan(1/8) - Pi/4]   =   0
    [(1)*Atan(1/3) + (1)*Atan(1/4) + (1)*Atan(1/7) + (1)*Atan(1/13) - Pi/4]   =   0
    [(12)*Atan(1/49) + (32)*Atan(1/57) + (-5)*Atan(1/239) + (12)*Atan(1/110443) - Pi/4]   =   0

    [(14)*Atanh(1/31) + (10)*Atanh(1/49) + (6)*Atanh(1/161) - Log(2)]   =   0
    [(22)*Atanh(1/31) + (16)*Atanh(1/49) + (10)*Atanh(1/161) - Log(3)]   =   0
    [(32)*Atanh(1/31) + (24)*Atanh(1/49) + (14)*Atanh(1/161) - Log(5)]   =   0
    [(144)*Atanh(1/251) + (54)*Atanh(1/449) + (-38)*Atanh(1/4801) + (62)*Atanh(1/8749) - Log(2)]   =   0
    [(228)*Atanh(1/251) + (86)*Atanh(1/449) + (-60)*Atanh(1/4801) + (98)*Atanh(1/8749) - Log(3)]   =   0
    [(334)*Atanh(1/251) + (126)*Atanh(1/449) + (-88)*Atanh(1/4801) + (144)*Atanh(1/8749) - Log(5)]   =   0
    [(404)*Atanh(1/251) + (152)*Atanh(1/449) + (-106)*Atanh(1/4801) + (174)*Atanh(1/8749) - Log(7)]   =   0

    cpu/wall(s): 0.016 0.016
    virt/peak/res/peak(MB): 35.57 35.57 8.80 8.80

swinnerton_dyer_poly.c
-------------------------------------------------------------------------------

This program computes the coefficients of the Swinnerton-Dyer polynomial

.. math::

    S_n = \prod (x \pm \sqrt{2} \pm \sqrt{3} \pm \sqrt{5} \pm \ldots \pm \sqrt{p_n})

where `p_n` denotes the `n`-th prime number and all combinations
of signs are taken. This polynomial has degree `2^n`.
The polynomial is expanded from its roots
using naive polynomial multiplication over :type:`ca_t` coefficients.
There are far more efficient ways to construct this polynomial;
this program simply illustrates that arithmetic in
multivariate number fields works smoothly.

The program prints the coefficients of `S_n`, from the constant
term to the coefficient of `x^{2^n}`.

Sample output::

    > build/examples/swinnerton_dyer_poly 3
    576
    0
    -960
    0
    352
    0
    -40
    0
    1

    cpu/wall(s): 0.002 0.002
    virt/peak/res/peak(MB): 35.07 35.11 5.40 5.40

A big benchmark problem (output truncated)::

    > build/examples/swinnerton_dyer_poly 10
    4.35675e+809 {43567450015...212890625}
    0
    ...
    0
    1

    cpu/wall(s): 9.296 9.307
    virt/peak/res/peak(MB): 38.95 38.95 10.01 10.01

huge_expr.c
-------------------------------------------------------------------------------

This program proves equality of two complicated algebraic numbers.
More precisely, the program verifies
that `N = -(1 - |M|^2)^2` where *N* and *M* are given by huge symbolic
expressions involving nested square roots (about 7000
operations in total).

By default, the program runs the computation using :type:`qqbar_t` arithmetic::

    > build/examples/huge_expr
    Evaluating N...
    cpu/wall(s): 7.205 7.206
    Evaluating M...
    cpu/wall(s): 0.933 0.934
    Evaluating E = -(1-|M|^2)^2...
    cpu/wall(s): 0.391 0.391
    N ~ -0.16190853053311203695842869991458578203473645660641
    E ~ -0.16190853053311203695842869991458578203473645660641
    Testing E = N...
    cpu/wall(s): 0.001 0

    Equal = T_TRUE

    Total: cpu/wall(s): 8.53 8.531
    virt/peak/res/peak(MB): 54.50 64.56 24.64 34.61

To run the computation using :type:`ca_t` arithmetic instead,
pass the -ca flag::

    > build/examples/huge_expr -ca
    Evaluating N...
    cpu/wall(s): 0.193 0.193
    Evaluating M...
    cpu/wall(s): 0.024 0.024
    Evaluating E = -(1-|M|^2)^2...
    cpu/wall(s): 0.008 0.009
    N ~ -0.16190853053311203695842869991458578203473645660641
    E ~ -0.16190853053311203695842869991458578203473645660641
    Testing E = N...
    cpu/wall(s): 8.017 8.019

    Equal = T_TRUE

    Total: cpu/wall(s): 8.243 8.246
    virt/peak/res/peak(MB): 61.67 65.29 33.97 37.54

This simplification problem was posted in a help request for Sage
(https://ask.sagemath.org/question/52653).
The C code has been generated from the symbolic expressions
using a Python script.


hilbert_matrix.c
-------------------------------------------------------------------------------

This program constructs the Hilbert matrix
`H_n = (1/(i+j-1))_{i=1,j=1}^n`, computes its
eigenvalues `\lambda_1, \ldots, \lambda_n`,
as exact algebraic numbers, and verifies
the exact trace and determinant formulas

.. math::

    \lambda_1 + \lambda_2 + \ldots + \lambda_n = \operatorname{tr}(H_n), \quad
    \lambda_1 \lambda_2 \cdots \lambda_n = \operatorname{det}(H_n).

Sample output::

    > build/examples/hilbert_matrix 6
    Trace:
    1.87821 {6508/3465}
    1.87821 {6508/3465}
    Equal: T_TRUE

    Det:
    5.36730e-18 {1/186313420339200000}
    5.36730e-18 {1/186313420339200000}
    Equal: T_TRUE


    cpu/wall(s): 0.07 0.069
    virt/peak/res/peak(MB): 36.56 36.66 9.69 9.69

The program accepts the following optional arguments:

* With ``-vieta``, force use of Vieta's formula internally (by default, Calcium
  uses Vieta's formulas when working with algebraic conjugates,
  but only up to some bound on the degree).
* With ``-novieta``, force Calcium not to use Vieta's formulas internally.
* With ``-qqbar``, do a similar computation using :type:`qqbar_t`
  arithmetic.

dft.c
-------------------------------------------------------------------------------

This program demonstrates the
discrete Fourier transform (DFT) in exact arithmetic.
For the input vector `\textbf{x} = (x_n)_{n=0}^{N-1}`, it verifies
the identity

.. math::

    \textbf{x} - \operatorname{DFT}^{-1}(\operatorname{DFT}(\textbf{x})) = 0

where

.. math::

    \operatorname{DFT}(\textbf{x})_n = \sum_{k=0}^{N-1} \omega^{-kn} x_k, \quad
    \operatorname{DFT}^{-1}(\textbf{x})_n = \frac{1}{N} \sum_{k=0}^{N-1} \omega^{kn} x_k,
    \quad \omega = e^{2 \pi i / N}.

The program computes the DFT by naive `O(N^2)` summation (not using FFT).
It uses repeated multiplication of `\omega`
to precompute an array of roots of unity
`1,\omega,\omega^2,\ldots,\omega^{2N-1}`
for use in both the DFT and the inverse DFT.

Usage::

    build/examples/dft [-verbose] [-input i] [-limit B] [-timing T] N

The required parameter ``N`` selects the length of the vector.

The optional flag ``-verbose`` chooses whether to print the arrays.

The optional parameter ``-timing T`` selects a timing method (default = 0).

* 0: run the computation once and time it
* 1: run the computation repeatedly if needed to get an accurate timing, creating a new context object for each iteration so that fields are not cached
* 2: run the computation once, then run the computation at least one more time (repeatedly if needed to get an accurate timing), recycling the same context object to measure the performance with cached fields

The optional parameter ``-input i`` selects an input sequence (default = 0).

* 0: `x_n = n+2`
* 1: `x_n = \sqrt{n+2}`
* 2: `x_n = \log(n+2)`
* 3: `x_n = e^{2 \pi i / (n+2)}`

The optional parameter ``-limit B`` sets the internal degree limit for algebraic numbers.

Sample output::

    > build/examples/dft 4 -input 1 -verbose
    DFT benchmark, length N = 4

    [x] =
    1.41421 {a where a = 1.41421 [a^2-2=0]}
    1.73205 {a where a = 1.73205 [a^2-3=0]}
    2
    2.23607 {a where a = 2.23607 [a^2-5=0]}

    DFT([x]) =
    7.38233 {a+b+c+2 where a = 2.23607 [a^2-5=0], b = 1.73205 [b^2-3=0], c = 1.41421 [c^2-2=0]}
    -0.585786 + 0.504017*I {a*d-b*d+c-2 where a = 2.23607 [a^2-5=0], b = 1.73205 [b^2-3=0], c = 1.41421 [c^2-2=0], d = I [d^2+1=0]}
    -0.553905 {-a-b+c+2 where a = 2.23607 [a^2-5=0], b = 1.73205 [b^2-3=0], c = 1.41421 [c^2-2=0]}
    -0.585786 - 0.504017*I {-a*d+b*d+c-2 where a = 2.23607 [a^2-5=0], b = 1.73205 [b^2-3=0], c = 1.41421 [c^2-2=0], d = I [d^2+1=0]}

    IDFT(DFT([x])) =
    1.41421 {c where a = 2.23607 [a^2-5=0], b = 1.73205 [b^2-3=0], c = 1.41421 [c^2-2=0], d = I [d^2+1=0]}
    1.73205 {b where a = 2.23607 [a^2-5=0], b = 1.73205 [b^2-3=0], c = 1.41421 [c^2-2=0], d = I [d^2+1=0]}
    2
    2.23607 {a where a = 2.23607 [a^2-5=0], b = 1.73205 [b^2-3=0], c = 1.41421 [c^2-2=0], d = I [d^2+1=0]}

    [x] - IDFT(DFT([x])) =
    0       (= 0   T_TRUE)
    0       (= 0   T_TRUE)
    0       (= 0   T_TRUE)
    0       (= 0   T_TRUE)

    cpu/wall(s): 0.009 0.009
    virt/peak/res/peak(MB): 36.28 36.28 9.14 9.14




.. raw:: latex

    \newpage