1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
|
.. _examples-calcium:
Calcium example programs
===============================================================================
.. highlight:: text
See :ref:`examples` for general information about example programs.
Running::
make examples
will compile the programs and place the binaries in
``build/examples``. The examples related to the Calcium module are
documented below.
elementary.c
-------------------------------------------------------------------------------
This program evaluates several elementary expressions.
For some inputs,
Calcium's arithmetic should produce
a simplified result automatically.
Some inputs do not yet automatically simplify as much
as one might hope.
Calcium may still able to prove that such a number is zero or nonzero;
the output of :func:`ca_check_is_zero` is then ``T_TRUE`` or ``T_FALSE``.
Sample output::
> build/examples/elementary
>>> Exp(Pi*I) + 1
0
>>> Log(-1) / (Pi*I)
1
>>> Log(-I) / (Pi*I)
-0.500000 {-1/2}
>>> Log(1 / 10^123) / Log(100)
-61.5000 {-123/2}
>>> Log(1 + Sqrt(2)) / Log(3 + 2*Sqrt(2))
0.500000 {1/2}
>>> Sqrt(2)*Sqrt(3) - Sqrt(6)
0
>>> Exp(1+Sqrt(2)) * Exp(1-Sqrt(2)) / (Exp(1)^2)
1
>>> I^I - Exp(-Pi/2)
0
>>> Exp(Sqrt(3))^2 - Exp(Sqrt(12))
0
>>> 2*Log(Pi*I) - 4*Log(Sqrt(Pi)) - Pi*I
0
>>> -I*Pi/8*Log(2/3-2*I/3)^2 + I*Pi/8*Log(2/3+2*I/3)^2 + Pi^2/12*Log(-1-I) + Pi^2/12*Log(-1+I) + Pi^2/12*Log(1/3-I/3) + Pi^2/12*Log(1/3+I/3) - Pi^2/48*Log(18)
0
>>> Sqrt(5 + 2*Sqrt(6)) - Sqrt(2) - Sqrt(3)
0e-1126 {a-c-d where a = 3.14626 [Sqrt(9.89898 {2*b+5})], b = 2.44949 [b^2-6=0], c = 1.73205 [c^2-3=0], d = 1.41421 [d^2-2=0]}
>>> Is zero?
T_TRUE
>>> Sqrt(I) - (1+I)/Sqrt(2)
0e-1126 + 0e-1126*I {(2*a-b*c-b)/2 where a = 0.707107 + 0.707107*I [Sqrt(1.00000*I {c})], b = 1.41421 [b^2-2=0], c = I [c^2+1=0]}
>>> Is zero?
T_TRUE
>>> Exp(Pi*Sqrt(163)) - (640320^3 + 744)
-7.49927e-13 {a-262537412640768744 where a = 2.62537e+17 [Exp(40.1092 {b*c})], b = 3.14159 [Pi], c = 12.7671 [c^2-163=0]}
>>> Erf(2*Log(Sqrt(1/2-Sqrt(2)/4))+Log(4)) - Erf(Log(2-Sqrt(2)))
0
cpu/wall(s): 0.022 0.022
virt/peak/res/peak(MB): 36.45 36.47 9.37 9.37
binet.c
-------------------------------------------------------------------------------
This program computes the *n*-th Fibonacci number using Binet's formula
`F_n = (\varphi^n - (1-\varphi)^n)/\sqrt{5}` where
`\varphi = \tfrac{1}{2} (1+\sqrt{5})`. The program takes *n* as input.
Sample output::
> build/examples/binet 250
7.89633e+51 {7896325826131730509282738943634332893686268675876375}
cpu/wall(s): 0.002 0.001
virt/peak/res/peak(MB): 36.14 36.14 5.81 5.81
This illustrates exact arithmetic in algebraic number fields.
The program also illustrates another aspect of Calcium arithmetic:
evaluation limits. For example, trying
to compute the index `n = 10^6`
Fibonacci number hits an evaluation limit, so the value is
not expanded to an explicit integer::
> build/examples/binet 1000000
1.95328e+208987 {(a*c-b*c)/5 where a = 4.36767e+208987 [Pow(1.61803 {(c+1)/2}, 1.00000e+6 {1000000})], b = 2.28955e-208988 [Pow(-0.618034 {(-c+1)/2}, 1.00000e+6 {1000000})], c = 2.23607 [c^2-5=0]}
cpu/wall(s): 0.006 0.005
virt/peak/res/peak(MB): 36.14 36.14 9.05 9.05
Calling the program with ``-limit B n`` raises the bit evaluation
limit to *B*. Setting this large enough allows `F_{10^6}` to expand
to an integer (the following output has been truncated to avoid
reproducing all 208988 digits)::
> build/examples/binet -limit 10000000 1000000
1.95328e+208987 {1953282128...8242546875}
cpu/wall(s): 0.229 0.242
virt/peak/res/peak(MB): 36.79 37.29 7.13 7.13
The exact mechanisms and interfaces for evaluation limits are still a
work in progress.
machin.c
-------------------------------------------------------------------------------
This program checks several variations of Machin's formula
.. math::
\frac{\pi}{4} = 4 \operatorname{atan}\left(\frac{1}{5}\right) - \operatorname{atan}\left(\frac{1}{239}\right)
expressing `\pi` or logarithms of small integers in terms of
arctangents or hyperbolic arctangents of rational numbers.
The program actually evaluates
`4 \operatorname{atan}\left(\tfrac{1}{5}\right) - \operatorname{atan}\left(\tfrac{1}{239}\right) - \tfrac{\pi}{4}`
(etc.) and prints the result, which should be precisely 0, proving the identity.
Inverse trigonometric functions are not yet implemented in Calcium,
so the example program evaluates them using logarithms.
Sample output::
> build/examples/machin
[(1)*Atan(1/1) - Pi/4] = 0
[(1)*Atan(1/2) + (1)*Atan(1/3) - Pi/4] = 0
[(2)*Atan(1/2) + (-1)*Atan(1/7) - Pi/4] = 0
[(2)*Atan(1/3) + (1)*Atan(1/7) - Pi/4] = 0
[(4)*Atan(1/5) + (-1)*Atan(1/239) - Pi/4] = 0
[(1)*Atan(1/2) + (1)*Atan(1/5) + (1)*Atan(1/8) - Pi/4] = 0
[(1)*Atan(1/3) + (1)*Atan(1/4) + (1)*Atan(1/7) + (1)*Atan(1/13) - Pi/4] = 0
[(12)*Atan(1/49) + (32)*Atan(1/57) + (-5)*Atan(1/239) + (12)*Atan(1/110443) - Pi/4] = 0
[(14)*Atanh(1/31) + (10)*Atanh(1/49) + (6)*Atanh(1/161) - Log(2)] = 0
[(22)*Atanh(1/31) + (16)*Atanh(1/49) + (10)*Atanh(1/161) - Log(3)] = 0
[(32)*Atanh(1/31) + (24)*Atanh(1/49) + (14)*Atanh(1/161) - Log(5)] = 0
[(144)*Atanh(1/251) + (54)*Atanh(1/449) + (-38)*Atanh(1/4801) + (62)*Atanh(1/8749) - Log(2)] = 0
[(228)*Atanh(1/251) + (86)*Atanh(1/449) + (-60)*Atanh(1/4801) + (98)*Atanh(1/8749) - Log(3)] = 0
[(334)*Atanh(1/251) + (126)*Atanh(1/449) + (-88)*Atanh(1/4801) + (144)*Atanh(1/8749) - Log(5)] = 0
[(404)*Atanh(1/251) + (152)*Atanh(1/449) + (-106)*Atanh(1/4801) + (174)*Atanh(1/8749) - Log(7)] = 0
cpu/wall(s): 0.016 0.016
virt/peak/res/peak(MB): 35.57 35.57 8.80 8.80
swinnerton_dyer_poly.c
-------------------------------------------------------------------------------
This program computes the coefficients of the Swinnerton-Dyer polynomial
.. math::
S_n = \prod (x \pm \sqrt{2} \pm \sqrt{3} \pm \sqrt{5} \pm \ldots \pm \sqrt{p_n})
where `p_n` denotes the `n`-th prime number and all combinations
of signs are taken. This polynomial has degree `2^n`.
The polynomial is expanded from its roots
using naive polynomial multiplication over :type:`ca_t` coefficients.
There are far more efficient ways to construct this polynomial;
this program simply illustrates that arithmetic in
multivariate number fields works smoothly.
The program prints the coefficients of `S_n`, from the constant
term to the coefficient of `x^{2^n}`.
Sample output::
> build/examples/swinnerton_dyer_poly 3
576
0
-960
0
352
0
-40
0
1
cpu/wall(s): 0.002 0.002
virt/peak/res/peak(MB): 35.07 35.11 5.40 5.40
A big benchmark problem (output truncated)::
> build/examples/swinnerton_dyer_poly 10
4.35675e+809 {43567450015...212890625}
0
...
0
1
cpu/wall(s): 9.296 9.307
virt/peak/res/peak(MB): 38.95 38.95 10.01 10.01
huge_expr.c
-------------------------------------------------------------------------------
This program proves equality of two complicated algebraic numbers.
More precisely, the program verifies
that `N = -(1 - |M|^2)^2` where *N* and *M* are given by huge symbolic
expressions involving nested square roots (about 7000
operations in total).
By default, the program runs the computation using :type:`qqbar_t` arithmetic::
> build/examples/huge_expr
Evaluating N...
cpu/wall(s): 7.205 7.206
Evaluating M...
cpu/wall(s): 0.933 0.934
Evaluating E = -(1-|M|^2)^2...
cpu/wall(s): 0.391 0.391
N ~ -0.16190853053311203695842869991458578203473645660641
E ~ -0.16190853053311203695842869991458578203473645660641
Testing E = N...
cpu/wall(s): 0.001 0
Equal = T_TRUE
Total: cpu/wall(s): 8.53 8.531
virt/peak/res/peak(MB): 54.50 64.56 24.64 34.61
To run the computation using :type:`ca_t` arithmetic instead,
pass the -ca flag::
> build/examples/huge_expr -ca
Evaluating N...
cpu/wall(s): 0.193 0.193
Evaluating M...
cpu/wall(s): 0.024 0.024
Evaluating E = -(1-|M|^2)^2...
cpu/wall(s): 0.008 0.009
N ~ -0.16190853053311203695842869991458578203473645660641
E ~ -0.16190853053311203695842869991458578203473645660641
Testing E = N...
cpu/wall(s): 8.017 8.019
Equal = T_TRUE
Total: cpu/wall(s): 8.243 8.246
virt/peak/res/peak(MB): 61.67 65.29 33.97 37.54
This simplification problem was posted in a help request for Sage
(https://ask.sagemath.org/question/52653).
The C code has been generated from the symbolic expressions
using a Python script.
hilbert_matrix.c
-------------------------------------------------------------------------------
This program constructs the Hilbert matrix
`H_n = (1/(i+j-1))_{i=1,j=1}^n`, computes its
eigenvalues `\lambda_1, \ldots, \lambda_n`,
as exact algebraic numbers, and verifies
the exact trace and determinant formulas
.. math::
\lambda_1 + \lambda_2 + \ldots + \lambda_n = \operatorname{tr}(H_n), \quad
\lambda_1 \lambda_2 \cdots \lambda_n = \operatorname{det}(H_n).
Sample output::
> build/examples/hilbert_matrix 6
Trace:
1.87821 {6508/3465}
1.87821 {6508/3465}
Equal: T_TRUE
Det:
5.36730e-18 {1/186313420339200000}
5.36730e-18 {1/186313420339200000}
Equal: T_TRUE
cpu/wall(s): 0.07 0.069
virt/peak/res/peak(MB): 36.56 36.66 9.69 9.69
The program accepts the following optional arguments:
* With ``-vieta``, force use of Vieta's formula internally (by default, Calcium
uses Vieta's formulas when working with algebraic conjugates,
but only up to some bound on the degree).
* With ``-novieta``, force Calcium not to use Vieta's formulas internally.
* With ``-qqbar``, do a similar computation using :type:`qqbar_t`
arithmetic.
dft.c
-------------------------------------------------------------------------------
This program demonstrates the
discrete Fourier transform (DFT) in exact arithmetic.
For the input vector `\textbf{x} = (x_n)_{n=0}^{N-1}`, it verifies
the identity
.. math::
\textbf{x} - \operatorname{DFT}^{-1}(\operatorname{DFT}(\textbf{x})) = 0
where
.. math::
\operatorname{DFT}(\textbf{x})_n = \sum_{k=0}^{N-1} \omega^{-kn} x_k, \quad
\operatorname{DFT}^{-1}(\textbf{x})_n = \frac{1}{N} \sum_{k=0}^{N-1} \omega^{kn} x_k,
\quad \omega = e^{2 \pi i / N}.
The program computes the DFT by naive `O(N^2)` summation (not using FFT).
It uses repeated multiplication of `\omega`
to precompute an array of roots of unity
`1,\omega,\omega^2,\ldots,\omega^{2N-1}`
for use in both the DFT and the inverse DFT.
Usage::
build/examples/dft [-verbose] [-input i] [-limit B] [-timing T] N
The required parameter ``N`` selects the length of the vector.
The optional flag ``-verbose`` chooses whether to print the arrays.
The optional parameter ``-timing T`` selects a timing method (default = 0).
* 0: run the computation once and time it
* 1: run the computation repeatedly if needed to get an accurate timing, creating a new context object for each iteration so that fields are not cached
* 2: run the computation once, then run the computation at least one more time (repeatedly if needed to get an accurate timing), recycling the same context object to measure the performance with cached fields
The optional parameter ``-input i`` selects an input sequence (default = 0).
* 0: `x_n = n+2`
* 1: `x_n = \sqrt{n+2}`
* 2: `x_n = \log(n+2)`
* 3: `x_n = e^{2 \pi i / (n+2)}`
The optional parameter ``-limit B`` sets the internal degree limit for algebraic numbers.
Sample output::
> build/examples/dft 4 -input 1 -verbose
DFT benchmark, length N = 4
[x] =
1.41421 {a where a = 1.41421 [a^2-2=0]}
1.73205 {a where a = 1.73205 [a^2-3=0]}
2
2.23607 {a where a = 2.23607 [a^2-5=0]}
DFT([x]) =
7.38233 {a+b+c+2 where a = 2.23607 [a^2-5=0], b = 1.73205 [b^2-3=0], c = 1.41421 [c^2-2=0]}
-0.585786 + 0.504017*I {a*d-b*d+c-2 where a = 2.23607 [a^2-5=0], b = 1.73205 [b^2-3=0], c = 1.41421 [c^2-2=0], d = I [d^2+1=0]}
-0.553905 {-a-b+c+2 where a = 2.23607 [a^2-5=0], b = 1.73205 [b^2-3=0], c = 1.41421 [c^2-2=0]}
-0.585786 - 0.504017*I {-a*d+b*d+c-2 where a = 2.23607 [a^2-5=0], b = 1.73205 [b^2-3=0], c = 1.41421 [c^2-2=0], d = I [d^2+1=0]}
IDFT(DFT([x])) =
1.41421 {c where a = 2.23607 [a^2-5=0], b = 1.73205 [b^2-3=0], c = 1.41421 [c^2-2=0], d = I [d^2+1=0]}
1.73205 {b where a = 2.23607 [a^2-5=0], b = 1.73205 [b^2-3=0], c = 1.41421 [c^2-2=0], d = I [d^2+1=0]}
2
2.23607 {a where a = 2.23607 [a^2-5=0], b = 1.73205 [b^2-3=0], c = 1.41421 [c^2-2=0], d = I [d^2+1=0]}
[x] - IDFT(DFT([x])) =
0 (= 0 T_TRUE)
0 (= 0 T_TRUE)
0 (= 0 T_TRUE)
0 (= 0 T_TRUE)
cpu/wall(s): 0.009 0.009
virt/peak/res/peak(MB): 36.28 36.28 9.14 9.14
.. raw:: latex
\newpage
|