1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
|
.. _fexpr:
**fexpr.h** -- flat-packed symbolic expressions
===============================================================================
This module supports working with symbolic expressions.
Introduction
-----------------------------------------------------------------------
Formally, a symbolic expression is either:
* An atom, being one of the following:
* An integer, for example 0 or -34.
* A symbol, for example ``x``, ``Mul``, ``SomeUserNamedSymbol``.
Symbols should be valid C identifiers (containing only the
characters ``A-Z``, ``a-z``, ``0-9``, ``_``,
and not starting with a digit).
* A string, for example ``"Hello, world!"``. For the moment, we
only consider ASCII strings, but there is no obstacle in
principle to supporting UTF-8.
* A non-atomic expression, representing a function call
`e_0(e_1, \ldots, e_n)` where `e_0, \ldots, e_n` are symbolic
expressions.
The meaning of an expression depends on the interpretation
of symbols in a given context.
For example, with a standard interpretation (used within Calcium) of the symbols
``Mul``, ``Add`` and
``Neg``, the expression ``Mul(3, Add(Neg(x), y))``
encodes the formula `3 \cdot ((-x)+y)`
where ``x`` and ``y`` are symbolic variables.
See :ref:`fexpr-builtin` for documentation of builtin symbols.
Computing and embedding data
.......................................................................
Symbolic expressions are usually not the best data structure to use
directly for heavy-duty computations. Functions acting on
symbolic expressions will typically convert
to a dedicated data structure (e.g. polynomials) internally
and (optionally) convert the final result back to a symbolic expression.
Symbolic expressions do not allow embedding arbitrary binary objects
such as FLINT/Arb/Antic/Calcium types as atoms.
This is done on purpose to make symbolic expressions easy to use
as a data exchange format.
To embed an object in an expression, one has the following options:
* Represent the object structurally using atoms supported natively by
symbolic expressions (for example, an integer polynomial can be
represented as a list of coefficients or as an arithmetic expression tree).
* Introduce a dummy symbol to represent the object, maintaining
an external translation table mapping this symbol to the intended value.
* Encode the object using a string or symbol name. This is generally not
recommended, as it requires parsing; properly used, symbolic
expressions have the benefit of being able to represent the parsed
structure.
Flat-packed representation
.......................................................................
Symbolic expressions are often implemented using trees of pointers
(often together with hash tables for uniqueness),
requiring some form of memory management.
The :type:`fexpr_t` type, by contrast, stores a symbolic expression
using a "flat-packed" representation without internal pointers.
The expression data is just an array of words (``ulong``).
The first word is a header encoding type information (whether
the expression is a function call or an atom, and the type
of the atom) and the total number of words
in the expression.
For atoms, the data is stored either in the header word itself (small
integers and short symbols/strings) or in the following words.
For function calls, the header is followed by
the expressions `e_0`, ..., `e_n` packed contiguously in memory.
Pros:
* Memory management is trivial.
* Copying an expression is just copying an array of words.
* Comparing expressions for equality is just comparing arrays of words.
* Merging expressions is basically just concatenating arrays of words.
* Expression data can be shared freely in binary form between
threads and even between machines (as long as all machines
have the same word size and endianness).
Cons:
* Repeated instances of the same subexpression cannot share memory
(a workaround is to introduce local dummy symbols for repeated
subexpressions).
* Extracting a subexpression for modification generally
requires making a complete
copy of that subxepression (however, for read-only access
to subexpressions, one can use "view" expressions which have
zero overhead).
* Manipulating a part of an expression generally requires rebuilding
the whole expression.
* Building an expression incrementally is typically `O(n^2)`.
As a workaround, it is a good idea to work with balanced (low-depth)
expressions and try to construct an expression in one go
(for example, to create a sum, create a single ``Add`` expression
with many arguments instead of chaining binary ``Add`` operations).
Types and macros
-------------------------------------------------------------------------------
.. type:: fexpr_struct
.. type:: fexpr_t
An *fexpr_struct* consists of a pointer to an array of words along
with a record of the number of allocated words.
An *fexpr_t* is defined as an array of length one of type
*fexpr_struct*, permitting an *fexpr_t* to be passed by
reference.
.. type:: fexpr_ptr
Alias for ``fexpr_struct *``, used for arrays of expressions.
.. type:: fexpr_srcptr
Alias for ``const fexpr_struct *``, used for arrays of expressions
when passed as constant input to functions.
.. type:: fexpr_vec_struct
.. type:: fexpr_vec_t
A type representing a vector of expressions with managed length.
The structure contains an :type:`fexpr_ptr` *entries* for
the entries, an integer *length* (the size of the vector), and
an integer *alloc* (the number of allocated entries).
.. macro:: fexpr_vec_entry(vec, i)
Returns a pointer to entry *i* in the vector *vec*.
Memory management
-------------------------------------------------------------------------------
.. function:: void fexpr_init(fexpr_t expr)
Initializes *expr* for use. Its value is set to the atomic
integer 0.
.. function:: void fexpr_clear(fexpr_t expr)
Clears *expr*, freeing its allocated memory.
.. function:: fexpr_ptr _fexpr_vec_init(slong len)
Returns a heap-allocated vector of *len* initialized expressions.
.. function:: void _fexpr_vec_clear(fexpr_ptr vec, slong len)
Clears the *len* expressions in *vec* and frees *vec* itself.
.. function:: void fexpr_fit_size(fexpr_t expr, slong size)
Ensures that *expr* has room for *size* words.
.. function:: void fexpr_set(fexpr_t res, const fexpr_t expr)
Sets *res* to the a copy of *expr*.
.. function:: void fexpr_swap(fexpr_t a, fexpr_t b)
Swaps *a* and *b* efficiently.
Size information
-------------------------------------------------------------------------------
.. function:: slong fexpr_depth(const fexpr_t expr)
Returns the depth of *expr* as a symbolic expression tree.
.. function:: slong fexpr_num_leaves(const fexpr_t expr)
Returns the number of leaves (atoms, counted with repetition)
in the expression *expr*.
.. function:: slong fexpr_size(const fexpr_t expr)
Returns the number of words in the internal representation
of *expr*.
.. function:: slong fexpr_size_bytes(const fexpr_t expr)
Returns the number of bytes in the internal representation
of *expr*. The count excludes the size of the structure itself.
Add ``sizeof(fexpr_struct)`` to get the size of the object as a
whole.
.. function:: slong fexpr_allocated_bytes(const fexpr_t expr)
Returns the number of allocated bytes in the internal
representation of *expr*. The count excludes the size of the
structure itself. Add ``sizeof(fexpr_struct)`` to get the size of
the object as a whole.
Comparisons
-------------------------------------------------------------------------------
.. function:: int fexpr_equal(const fexpr_t a, const fexpr_t b)
Checks if *a* and *b* are exactly equal as expressions.
.. function:: int fexpr_equal_si(const fexpr_t expr, slong c)
.. function:: int fexpr_equal_ui(const fexpr_t expr, ulong c)
Checks if *expr* is an atomic integer exactly equal to *c*.
.. function:: ulong fexpr_hash(const fexpr_t expr)
Returns a hash of the expression *expr*.
.. function:: int fexpr_cmp_fast(const fexpr_t a, const fexpr_t b)
Compares *a* and *b* using an ordering based on the internal
representation, returning -1, 0 or 1. This can be used, for
instance, to maintain sorted arrays of expressions for binary
search; the sort order has no mathematical significance.
Atoms
-------------------------------------------------------------------------------
.. function:: int fexpr_is_integer(const fexpr_t expr)
Returns whether *expr* is an atomic integer
.. function:: int fexpr_is_symbol(const fexpr_t expr)
Returns whether *expr* is an atomic symbol.
.. function:: int fexpr_is_string(const fexpr_t expr)
Returns whether *expr* is an atomic string.
.. function:: int fexpr_is_atom(const fexpr_t expr)
Returns whether *expr* is any atom.
.. function:: void fexpr_zero(fexpr_t res)
Sets *res* to the atomic integer 0.
.. function:: int fexpr_is_zero(const fexpr_t expr)
Returns whether *expr* is the atomic integer 0.
.. function:: int fexpr_is_neg_integer(const fexpr_t expr)
Returns whether *expr* is any negative atomic integer.
.. function:: void fexpr_set_si(fexpr_t res, slong c)
void fexpr_set_ui(fexpr_t res, ulong c)
void fexpr_set_fmpz(fexpr_t res, const fmpz_t c)
Sets *res* to the atomic integer *c*.
.. function:: int fexpr_get_fmpz(fmpz_t res, const fexpr_t expr)
Sets *res* to the atomic integer in *expr*. This aborts
if *expr* is not an atomic integer.
.. function:: void fexpr_set_symbol_builtin(fexpr_t res, slong id)
Sets *res* to the builtin symbol with internal index *id*
(see :ref:`fexpr-builtin`).
.. function:: int fexpr_is_builtin_symbol(const fexpr_t expr, slong id)
Returns whether *expr* is the builtin symbol with index *id*
(see :ref:`fexpr-builtin`).
.. function:: int fexpr_is_any_builtin_symbol(const fexpr_t expr)
Returns whether *expr* is any builtin symbol
(see :ref:`fexpr-builtin`).
.. function:: void fexpr_set_symbol_str(fexpr_t res, const char * s)
Sets *res* to the symbol given by *s*.
.. function:: char * fexpr_get_symbol_str(const fexpr_t expr)
Returns the symbol in *expr* as a string. The string must
be freed with :func:`flint_free`.
This aborts if *expr* is not an atomic symbol.
.. function:: void fexpr_set_string(fexpr_t res, const char * s)
Sets *res* to the atomic string *s*.
.. function:: char * fexpr_get_string(const fexpr_t expr)
Assuming that *expr* is an atomic string, returns a copy of this
string. The string must be freed with :func:`flint_free`.
Input and output
------------------------------------------------------------------------
.. function:: void fexpr_write(calcium_stream_t stream, const fexpr_t expr)
Writes *expr* to *stream*.
.. function:: void fexpr_print(const fexpr_t expr)
Prints *expr* to standard output.
.. function:: char * fexpr_get_str(const fexpr_t expr)
Returns a string representation of *expr*. The string must
be freed with :func:`flint_free`.
Warning: string literals appearing in expressions
are currently not escaped.
LaTeX output
------------------------------------------------------------------------
.. function:: void fexpr_write_latex(calcium_stream_t stream, const fexpr_t expr, ulong flags)
Writes the LaTeX representation of *expr* to *stream*.
.. function:: void fexpr_print_latex(const fexpr_t expr, ulong flags)
Prints the LaTeX representation of *expr* to standard output.
.. function:: char * fexpr_get_str_latex(const fexpr_t expr, ulong flags)
Returns a string of the LaTeX representation of *expr*. The string
must be freed with :func:`flint_free`.
Warning: string literals appearing in expressions
are currently not escaped.
The *flags* parameter allows specifying options for LaTeX output.
The following flags are supported:
.. macro:: FEXPR_LATEX_SMALL
Generate more compact formulas, most importantly by printing
fractions inline as `p/q` instead of as `\displaystyle{\frac{p}{q}}`.
This flag is automatically activated within
subscripts and superscripts and in certain other parts of
formulas.
.. macro:: FEXPR_LATEX_LOGIC
Use symbols for logical operators such as Not, And, Or, which by
default are rendered as words for legibility.
Function call structure
------------------------------------------------------------------------
.. function:: slong fexpr_nargs(const fexpr_t expr)
Returns the number of arguments *n* in the function call
`f(e_1,\ldots,e_n)` represented
by *expr*. If *expr* is an atom, returns -1.
.. function:: void fexpr_func(fexpr_t res, const fexpr_t expr)
Assuming that *expr* represents a function call
`f(e_1,\ldots,e_n)`, sets *res* to the function expression *f*.
.. function:: void fexpr_view_func(fexpr_t view, const fexpr_t expr)
As :func:`fexpr_func`, but sets *view* to a shallow view
instead of copying the expression.
The variable *view* must not be initialized before use or
cleared after use, and *expr* must not be modified or cleared
as long as *view* is in use.
.. function:: void fexpr_arg(fexpr_t res, const fexpr_t expr, slong i)
Assuming that *expr* represents a function call
`f(e_1,\ldots,e_n)`, sets *res* to the argument `e_{i+1}`.
Note that indexing starts from 0.
The index must be in bounds, with `0 \le i < n`.
.. function:: void fexpr_view_arg(fexpr_t view, const fexpr_t expr, slong i)
As :func:`fexpr_arg`, but sets *view* to a shallow view
instead of copying the expression.
The variable *view* must not be initialized before use or
cleared after use, and *expr* must not be modified or cleared
as long as *view* is in use.
.. function:: void fexpr_view_next(fexpr_t view)
Assuming that *view* is a shallow view of a function argument `e_i`
in a function call `f(e_1,\ldots,e_n)`, sets *view* to
a view of the next argument `e_{i+1}`.
This function can be called when *view* refers to the last argument
`e_n`, provided that *view* is not used afterwards.
This function can also be called when *view* refers to the function *f*,
in which case it will make *view* point to `e_1`.
.. function:: int fexpr_is_builtin_call(const fexpr_t expr, slong id)
Returns whether *expr* has the form `f(\ldots)` where *f* is
a builtin function defined by *id* (see :ref:`fexpr-builtin`).
.. function:: int fexpr_is_any_builtin_call(const fexpr_t expr)
Returns whether *expr* has the form `f(\ldots)` where *f* is
any builtin function (see :ref:`fexpr-builtin`).
Composition
------------------------------------------------------------------------
.. function:: void fexpr_call0(fexpr_t res, const fexpr_t f)
void fexpr_call1(fexpr_t res, const fexpr_t f, const fexpr_t x1)
void fexpr_call2(fexpr_t res, const fexpr_t f, const fexpr_t x1, const fexpr_t x2)
void fexpr_call3(fexpr_t res, const fexpr_t f, const fexpr_t x1, const fexpr_t x2, const fexpr_t x3)
void fexpr_call4(fexpr_t res, const fexpr_t f, const fexpr_t x1, const fexpr_t x2, const fexpr_t x3, const fexpr_t x4)
void fexpr_call_vec(fexpr_t res, const fexpr_t f, fexpr_srcptr args, slong len)
Creates the function call `f(x_1,\ldots,x_n)`.
The *vec* version takes the arguments as an array *args*
and *n* is given by *len*.
Warning: aliasing between inputs and outputs is not implemented.
.. function:: void fexpr_call_builtin1(fexpr_t res, slong f, const fexpr_t x1)
void fexpr_call_builtin2(fexpr_t res, slong f, const fexpr_t x1, const fexpr_t x2)
Creates the function call `f(x_1,\ldots,x_n)`, where *f* defines
a builtin symbol.
Subexpressions and replacement
------------------------------------------------------------------------
.. function:: int fexpr_contains(const fexpr_t expr, const fexpr_t x)
Returns whether *expr* contains the expression *x* as a subexpression
(this includes the case where *expr* and *x* are equal).
.. function:: int fexpr_replace(fexpr_t res, const fexpr_t expr, const fexpr_t x, const fexpr_t y)
Sets *res* to the expression *expr* with all occurrences of the subexpression
*x* replaced by the expression *y*. Returns a boolean value indicating whether
any replacements have been performed.
Aliasing is allowed between *res* and *expr* but not between *res*
and *x* or *y*.
.. function:: int fexpr_replace2(fexpr_t res, const fexpr_t expr, const fexpr_t x1, const fexpr_t y1, const fexpr_t x2, const fexpr_t y2)
Like :func:`fexpr_replace`, but simultaneously replaces *x1* by *y1*
and *x2* by *y2*.
.. function:: int fexpr_replace_vec(fexpr_t res, const fexpr_t expr, const fexpr_vec_t xs, const fexpr_vec_t ys)
Sets *res* to the expression *expr* with all occurrences of the
subexpressions given by entries in *xs* replaced by the corresponding
expressions in *ys*. It is required that *xs* and *ys* have the same length.
Returns a boolean value indicating whether any replacements
have been performed.
Aliasing is allowed between *res* and *expr* but not between *res*
and the entries of *xs* or *ys*.
Arithmetic expressions
------------------------------------------------------------------------
.. function:: void fexpr_set_fmpq(fexpr_t res, const fmpq_t x)
Sets *res* to the rational number *x*. This creates an atomic
integer if the denominator of *x* is one, and otherwise creates a
division expression.
.. function:: void fexpr_set_arf(fexpr_t res, const arf_t x)
void fexpr_set_d(fexpr_t res, double x)
Sets *res* to an expression for the value of the
floating-point number *x*. NaN is represented
as ``Undefined``. For a regular value, this creates an atomic integer
or a rational fraction if the exponent is small, and otherwise
creates an expression of the form ``Mul(m, Pow(2, e))``.
.. function:: void fexpr_set_re_im_d(fexpr_t res, double x, double y)
Sets *res* to an expression for the complex number with real part
*x* and imaginary part *y*.
.. function:: void fexpr_neg(fexpr_t res, const fexpr_t a)
void fexpr_add(fexpr_t res, const fexpr_t a, const fexpr_t b)
void fexpr_sub(fexpr_t res, const fexpr_t a, const fexpr_t b)
void fexpr_mul(fexpr_t res, const fexpr_t a, const fexpr_t b)
void fexpr_div(fexpr_t res, const fexpr_t a, const fexpr_t b)
void fexpr_pow(fexpr_t res, const fexpr_t a, const fexpr_t b)
Constructs an arithmetic expression with given arguments.
No simplifications whatsoever are performed.
.. function:: int fexpr_is_arithmetic_operation(const fexpr_t expr)
Returns whether *expr* is of the form `f(e_1,\ldots,e_n)`
where *f* is one of the arithmetic operators ``Pos``, ``Neg``,
``Add``, ``Sub``, ``Mul``, ``Div``.
.. function:: void fexpr_arithmetic_nodes(fexpr_vec_t nodes, const fexpr_t expr)
Sets *nodes* to a vector of subexpressions of *expr* such that *expr*
is an arithmetic expression with *nodes* as leaves.
More precisely, *expr* will be constructed out of nested application
the arithmetic operators
``Pos``, ``Neg``, ``Add``, ``Sub``, ``Mul``, ``Div`` with
integers and expressions in *nodes* as leaves.
Powers ``Pow`` with an atomic integer exponent are also allowed.
The nodes are output without repetition but are not automatically sorted in
a canonical order.
.. function:: int fexpr_get_fmpz_mpoly_q(fmpz_mpoly_q_t res, const fexpr_t expr, const fexpr_vec_t vars, const fmpz_mpoly_ctx_t ctx)
Sets *res* to the expression *expr* as a formal rational
function of the subexpressions in *vars*.
The vector *vars* must have the same length as the number of
variables specified in *ctx*.
To build *vars* automatically for a given expression,
:func:`fexpr_arithmetic_nodes` may be used.
Returns 1 on success and 0 on failure. Failure can occur for the
following reasons:
* A subexpression is encountered that cannot be interpreted
as an arithmetic operation and does not appear (exactly) in *vars*.
* Overflow (too many terms or too large exponent).
* Division by zero (a zero denominator is encountered).
It is important to note that this function views *expr* as
a formal rational function with *vars* as formal indeterminates.
It does thus not check for algebraic relations between *vars*
and can implicitly divide by zero if *vars* are not algebraically
independent.
.. function:: void fexpr_set_fmpz_mpoly(fexpr_t res, const fmpz_mpoly_t poly, const fexpr_vec_t vars, const fmpz_mpoly_ctx_t ctx)
void fexpr_set_fmpz_mpoly_q(fexpr_t res, const fmpz_mpoly_q_t frac, const fexpr_vec_t vars, const fmpz_mpoly_ctx_t ctx)
Sets *res* to an expression for the multivariate polynomial *poly*
(or rational function *frac*),
using the expressions in *vars* as the variables. The length
of *vars* must agree with the number of variables in *ctx*.
If *NULL* is passed for *vars*, a default choice of symbols
is used.
.. function:: int fexpr_expanded_normal_form(fexpr_t res, const fexpr_t expr, ulong flags)
Sets *res* to *expr* converted to expanded normal form viewed
as a formal rational function with its non-arithmetic subexpressions
as terminal nodes.
This function first computes nodes with :func:`fexpr_arithmetic_nodes`,
sorts the nodes, evaluates to a rational function with
:func:`fexpr_get_fmpz_mpoly_q`, and then converts back to an
expression with :func:`fexpr_set_fmpz_mpoly_q`.
Optional *flags* are reserved for future use.
Vectors
------------------------------------------------------------------------
.. function:: void fexpr_vec_init(fexpr_vec_t vec, slong len)
Initializes *vec* to a vector of length *len*. All entries
are set to the atomic integer 0.
.. function:: void fexpr_vec_clear(fexpr_vec_t vec)
Clears the vector *vec*.
.. function:: void fexpr_vec_print(const fexpr_vec_t vec)
Prints *vec* to standard output.
.. function:: void fexpr_vec_swap(fexpr_vec_t x, fexpr_vec_t y)
Swaps *x* and *y* efficiently.
.. function:: void fexpr_vec_fit_length(fexpr_vec_t vec, slong len)
Ensures that *vec* has space for *len* entries.
.. function:: void fexpr_vec_set(fexpr_vec_t dest, const fexpr_vec_t src)
Sets *dest* to a copy of *src*.
.. function:: void fexpr_vec_append(fexpr_vec_t vec, const fexpr_t expr)
Appends *expr* to the end of the vector *vec*.
.. function:: slong fexpr_vec_insert_unique(fexpr_vec_t vec, const fexpr_t expr)
Inserts *expr* without duplication into vec, returning its
position. If this expression already exists, *vec* is unchanged.
If this expression does not exist in *vec*, it is appended.
.. function:: void fexpr_vec_set_length(fexpr_vec_t vec, slong len)
Sets the length of *vec* to *len*, truncating or zero-extending as needed.
.. function:: void _fexpr_vec_sort_fast(fexpr_ptr vec, slong len)
Sorts the *len* entries in *vec* using
the comparison function :func:`fexpr_cmp_fast`.
.. raw:: latex
\newpage
|