File: fexpr_builtin.rst

package info (click to toggle)
flint 3.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 68,996 kB
  • sloc: ansic: 915,350; asm: 14,605; python: 5,340; sh: 4,512; lisp: 2,621; makefile: 787; cpp: 341
file content (1293 lines) | stat: -rw-r--r-- 26,952 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
.. _fexpr-builtin:

**fexpr_builtin.h** -- builtin symbols
===============================================================================

This module defines symbol names with a predefined meaning for
use in symbolic expressions. These symbols will eventually all
support LaTeX rendering as well as symbolic and numerical evaluation
(where applicable).

By convention, all builtin symbol names are at least two characters
long and start with an uppercase letter. Single-letter symbol names
and symbol names beginning with a lowercase letter are reserved for
variables.

For any builtin symbol name ``Symbol``, the header file
``fexpr_builtin.h`` defines a C constant ``FEXPR_Symbol`` as an
index to a builtin symbol table.
The symbol will be documented as ``Symbol`` below.

C helper functions
------------------------------------------------------------------------

.. function:: slong fexpr_builtin_lookup(const char * s)

    Returns the internal index used to encode the builtin symbol
    with name *s* in expressions. If *s* is not the name of a builtin
    symbol, returns -1.

.. function:: const char * fexpr_builtin_name(slong n)

    Returns a read-only pointer for a string giving the name of the
    builtin symbol with index *n*.

.. function:: slong fexpr_builtin_length(void)

    Returns the number of builtin symbols.

Variables and iteration
------------------------------------------------------------------------

Expressions involving the following symbols have a special role
in binding variables.

.. macro:: For

    Generator expression. This is a syntactical construct which does
    not represent a mathematical object on its own.
    In general, ``For(x, ...)`` defines the symbol ``x`` as a locally bound
    variable in the scope of the parent expression.
    The following arguments ``...`` specify an evaluation range,
    set or point. Their interpretation depends on the parent
    operator. The following cases are possible.

    Case 1: ``For(x, S)`` specifies iteration or comprehension for ``x``
    ranging over the values of the set ``S``.
    This interpretation is used in operators that aggregate values
    over a set. The ``For`` expression may be followed by a filter
    predicate ``P(x)`` restricting the range to a subset of ``S``.
    Examples:

        ``Set(f(x), For(x, S))`` denotes `\{f(x) : x \in S\}`.

        ``Set(f(x), For(x, S), P(x))`` denotes `\{f(x) : x \in S \operatorname{and} P(x)\}`.

        ``Sum(f(x), For(x, S))`` denotes `\sum_{x \in S} f(x)`.

        ``Sum(f(x), For(x, S), P(x))`` denotes `\sum_{x \in S, \, P(x)} f(x)`.

    Case 2: ``For(x, a, b)`` specifies that ``x`` ranges between
    the endpoints ``a`` and ``b`` in the context of ``Sum``,
    ``Product``, ``Integral``, and similar operators.
    Examples:

        ``Sum(f(n), For(n, a, b))`` denotes `\sum_{n=a}^b f(n)`.
        The iteration is empty if `b < a`.

        ``Integral(f(x), For(x, a, b))`` denotes `\int_a^b f(x) dx`,
        where the integral follows a straight-line path from *a*
        to *b*. Swapping *a* and *b* negates the value.

    Case 3: ``For(x, a)`` specifies that ``x`` approaches the
    point ``a`` in the context of ``Limit``-type operator, or
    differentiation with respect to ``x`` at the point ``a`` in the
    context of a ``Derivative``-type operator. Examples:

        ``Derivative(f(x), For(x, a))`` denotes `f'(a)`.

        ``Limit(f(x), For(x, a))`` denotes `\lim_{x \to a} f(x)`.

    Case 4: ``For(x, a, n)`` specifies differentiation with respect
    to ``x`` at the point ``a`` to order ``n`` in the context of
    a ``Derivative``-type operator. Examples:

        ``Derivative(f(x), For(x, a, n))`` denotes `f^{(n)}(a)`.

.. macro:: Where

    ``Where(f(x), Def(x, a))`` defines the symbol ``x`` as an alias for
    the expression ``a`` and evaluates the expression ``f(x)`` with
    this bound value of ``x``. This is equivalent to ``f(a)``.
    This may be rendered as `f(x) \; \operatorname{where} x = a`.

    ``Where(f(x), Def(f(t), a))`` defines the symbol ``f`` as
    a function mapping the dummy variable ``t`` to ``a``.

    ``Where(Add(a, b), Def(Tuple(a, b), T))`` is a destructuring
    assignment.

.. macro:: Def

    Definition expression. This is a syntactical construct which does
    not represent a mathematical object on its own.
    The ``Def`` expression is used only within a ``Where``-expression;
    see that documentation of that symbol for more examples.

    ``Def(x, a)`` defines the symbol ``x`` as an alias for the
    expression ``a``.

    ``Def(f(x, y, z), a)`` defines the symbol ``f`` as a function
    of three variables. The dummy variables ``x``, ``y`` and ``z``
    may appear within the expression ``a``.

.. macro:: Fun

    ``Fun(x, expr)`` defines an anonymous univariate function mapping
    the symbol ``x`` to the expression ``expr``.
    The symbol ``x`` becomes locally bound within this ``Fun``
    expression.

.. macro:: Step

.. macro:: Repeat

Booleans and logic
------------------------------------------------------------------------

.. macro:: Equal

    ``Equal(a, b)``, signifying `a = b`, is ``True`` if ``a`` and
    ``b`` represent the same object, and ``False`` otherwise.
    This operator can be called with any number of arguments,
    in which case it evaluates whether all arguments are
    equal.

.. macro:: NotEqual

    ``NotEqual(a, b)``, signifying `a \ne b`, is equivalent to
    ``Not(Equal(a, b))``.

.. macro:: Same
 
    ``Same(a, b)`` gives ``a`` (or equivalently ``b``) if ``a`` and
    ``b`` represent the same object, and ``Undefined`` otherwise.
    This can be used to assert or emphasize that two expressions
    represent the same value within a formula.
    This operator can be called with any number of arguments,
    in which case it asserts that all arguments are equal.

.. macro:: True

    ``True`` is a logical constant.

.. macro:: False

    ``False`` is a logical constant.

.. macro:: Not

    ``Not(x)`` is the logical negation of ``x``.

.. macro:: And

    ``And(x, y)`` is the logical AND of ``x`` and ``y``. This function
    can be called with any number of arguments.

.. macro:: Or

    ``Or(x, y)`` is the logical OR of ``x`` and ``y``. This function
    can be called with any number of arguments.

.. macro:: Equivalent

    ``Equivalent(x, y)`` denotes the logical equivalence `x \Leftrightarrow y`.
    Semantically, this is the same as ``Equal``
    called with logical arguments.

.. macro:: Implies

    ``Implies(x, y)`` denotes the logical implication `x \implies y`.

.. macro:: Exists

    Existence quantifier.

    ``Exists(f(x), For(x, S))`` denotes `f(x) \;\text{ for some } x \in S`.

    ``Exists(f(x), For(x, S), P(x))`` denotes `f(x) \;\text{ for some } x \in S \text{ with } P(x)`.

.. macro:: All

    Universal quantifier.

    ``All(f(x), For(x, S))`` denotes `f(x) \;\text{ for all } x \in S`.

    ``All(f(x), For(x, S), P(x))`` denotes `f(x) \;\text{ for all } x \in S \text{ with } P(x)`.


.. macro:: Cases

    ``Cases(Case(f(x), P(x)), Case(g(x), Otherwise))`` denotes:

    .. math::

        \begin{cases} f(x), & P(x)\\g(x), & \text{otherwise}\\ \end{cases}

    ``Cases(Case(f(x), P(x)), Case(g(x), Q(x)), Case(h(x), Otherwise))`` denotes:

    .. math::

        \begin{cases} f(x), & P(x)\\g(x), & Q(x)\\h(x), & \text{otherwise}\\ \end{cases}

    If both `P(x)` and `Q(x)` are true simultaneously, no ordering is implied;
    it is assumed that `f(x)` and `g(x)` give the same value for any such `x`.
    More generally, this operator can be called with any number of case
    distinctions.

    If the *Otherwise* case is omitted, the result is undefined if neither
    predicate is true.

.. macro:: Case

    See ``Cases``.

.. macro:: Otherwise

    See ``Cases``.

Tuples, lists and sets
------------------------------------------------------------------------

.. macro:: Tuple

.. macro:: List

.. macro:: Set

.. macro:: Item

.. macro:: Element

.. macro:: NotElement

.. macro:: EqualAndElement

.. macro:: Length

.. macro:: Cardinality

.. macro:: Concatenation

.. macro:: Union

.. macro:: Intersection

.. macro:: SetMinus

.. macro:: Subset

.. macro:: SubsetEqual

.. macro:: CartesianProduct

.. macro:: CartesianPower

.. macro:: Subsets

    ``Subsets(S)`` is the power set `\mathscr{P}(S)` comprising
    all subsets of the set ``S``.

.. macro:: Sets

    ``Sets`` is the class `\operatorname{Sets}` of all sets.

.. macro:: Tuples

    ``Tuples`` is the class of all tuples.

    ``Tuples(S)`` is the set of all tuples with elements in the
    set ``S``.

    ``Tuples(S, n)`` is the set of all length-``n`` tuples with elements in the
    set ``S``.


Numbers and arithmetic
------------------------------------------------------------------------

Undefined
........................................................................

.. macro:: Undefined

    ``Undefined`` is the special value `\mathfrak{u}` (undefined).

Particular numbers
........................................................................

.. macro:: Pi

    ``Pi`` is the constant `\pi`.

.. macro:: NumberI

    ``NumberI`` is the imaginary unit `i`.
    The verbose name leaves ``i`` and ``I`` to be used as a
    variable names.

.. macro:: NumberE

    ``NumberE`` is the base of the natural logarithm `e`.
    The verbose name leaves ``e`` and ``E`` to be used as a variable
    names.

.. macro:: GoldenRatio

    ``GoldenRatio`` is the golden ratio `\varphi`.

.. macro:: Euler

    ``Euler`` is Euler's constant `\gamma`.

.. macro:: CatalanConstant

    ``CatalanConstant`` is Catalan's constant `G`.

.. macro:: KhinchinConstant

    ``KhinchinConstant`` is Khinchin's constant `K`.

.. macro:: GlaisherConstant

    ``GlaisherConstant`` is Glaisher's constant `A`.

.. macro:: RootOfUnity

    ``RootOfUnity(n)`` is the principal complex *n*-th root of unity `\zeta_n = e^{2 \pi i / n}`.

    ``RootOfUnity(n, k)`` is the complex *n*-th root of unity `\zeta_n^k`.

Number constructors
........................................................................

Remark: the rational number with numerator *p* and denominator *q*
can be constructed as ``Div(p, q)``.

.. macro:: Decimal

    ``Decimal(str)`` gives the rational number specified by the
    string *str* in ordinary decimal floating-point notation
    (for example ``-3.25e-725``).

.. macro:: AlgebraicNumberSerialized

.. macro:: PolynomialRootIndexed

.. macro:: PolynomialRootNearest

.. macro:: Enclosure

.. macro:: Approximation

.. macro:: Guess

.. macro:: Unknown


Arithmetic operations
........................................................................

.. macro:: Pos

.. macro:: Neg

.. macro:: Add

.. macro:: Sub

.. macro:: Mul

.. macro:: Div

.. macro:: Pow

.. macro:: Sqrt

.. macro:: Root


Inequalities
........................................................................

.. macro:: Less

.. macro:: LessEqual

.. macro:: Greater

.. macro:: GreaterEqual

.. macro:: EqualNearestDecimal


Sets of numbers
........................................................................

.. macro:: NN

    ``NN`` is the set of natural numbers (including 0), `\mathbb{N}`.

.. macro:: ZZ

    ``ZZ`` is the set of integers, `\mathbb{Z}`.

.. macro:: QQ

    ``QQ`` is the set of rational numbers, `\mathbb{Q}`.

.. macro:: RR

    ``RR`` is the set of real numbers, `\mathbb{R}`.

.. macro:: CC

    ``CC`` is the set of complex numbers, `\mathbb{C}`.

.. macro:: Primes

    ``Primes`` is the set of positive prime numbers, `\mathbb{P}`

.. macro:: IntegersGreaterEqual

    ``IntegersGreaterEqual(x)``, given an extended real number *x*,
    gives the set `\mathbb{Z}_{\ge x}`
    of integers greater than or equal to *x*.

.. macro:: IntegersLessEqual

    ``IntegersLessEqual(x)``, given an extended real number *x*,
    gives the set `\mathbb{Z}_{\le x}`
    of integers less than or equal to *x*.

.. macro:: Range

    ``Range(a, b)``, given integers *a* and *b*, gives the set
    `\{a, a+1, \ldots, b\}` of integers between *a* and *b*.
    This is the empty set if *a* is greater than *b*.

.. macro:: AlgebraicNumbers

    The set of complex algebraic numbers `\overline{\mathbb{Q}}`.

.. macro:: RealAlgebraicNumbers

    The set of real algebraic numbers `\overline{\mathbb{Q}}_{\mathbb{R}}`.

.. macro:: Interval

    ``Interval(a, b)``, given extended real numbers *a* and *b*, gives
    the closed interval `[a, b]`.

.. macro:: OpenInterval

    ``OpenInterval(a, b)``, given extended real numbers *a* and *b*, gives
    the open interval `(a, b)`.

.. macro:: ClosedOpenInterval

    ``ClosedOpenInterval(a, b)``, given extended real numbers *a* and *b*, gives
    the closed-open interval `[a, b)`.

.. macro:: OpenClosedInterval

    ``OpenClosedInterval(a, b)``, given extended real numbers *a* and *b*, gives
    the closed-open interval `(a, b]`.

.. macro:: RealBall

    ``RealBall(m, r)``, given a real number *m* and an extended real number *r*, gives the
    the closed real ball `[m \pm r]` with center *m* and radius *r*.

.. macro:: OpenRealBall

    ``OpenRealBall(m, r)``, given a real number *m* and an extended real number *r*, gives the
    the open real ball `(m \pm r)` with center *m* and radius *r*.

.. macro:: OpenComplexDisk

    ``OpenComplexDisk(m, r)``, given a complex number *m* and an extended real number *r*,
    gives the open complex disk `D(m, r)` with center *m* and radius *r*.

.. macro:: ClosedComplexDisk

    ``ClosedComplexDisk(m, r)``, given a complex number *m* and a real number *r*,
    gives the closed complex disk `\overline{D}(m, r)` with center *m* and radius *r*.

.. macro:: UpperHalfPlane

    ``UpperHalfPlane`` is the set `\mathbb{H}` of complex numbers
    with positive imaginary part.

.. macro:: UnitCircle

.. macro:: BernsteinEllipse

.. macro:: Lattice


Infinities and extended numbers
........................................................................

.. macro:: Infinity

    ``Infinity`` is the positive signed infinity `\infty`.

.. macro:: UnsignedInfinity

    ``UnsignedInfinity`` is the unsigned infinity `\tilde \infty`.

.. macro:: RealSignedInfinities

    ``RealSignedInfinities`` is the set of real signed infinities
    `\{+\infty, -\infty\}`.

.. macro:: ComplexSignedInfinities

    ``ComplexSignedInfinities`` is the set of complex signed
    infinities `\{e^{i \theta} \cdot \infty : \theta \in \mathbb{R}\}`.

.. macro:: RealInfinities

    ``RealInfinities`` is the set of real infinities (signed
    and unsigned)
    `\{+\infty, -\infty\} \cup \{\tilde \infty\}`.

.. macro:: ComplexInfinities

    ``ComplexInfinities`` is the set of complex infinities (signed
    and unsigned)
    `\{e^{i \theta} \cdot \infty : \theta \in \mathbb{R}\} \cup \{\tilde \infty\}`.

.. macro:: ExtendedRealNumbers

    ``ExtendedRealNumbers`` is the set of extended real numbers
    `\mathbb{R} \cup \{+\infty, -\infty\}`.

.. macro:: ProjectiveRealNumbers

    ``ProjectiveRealNumbers`` is the set of projectively extended real numbers
    `\mathbb{R} \cup \{\tilde \infty\}`.

.. macro:: SignExtendedComplexNumbers

    ``SignExtendedComplexNumbers`` is the set of complex numbers
    extended with signed infinities
    `\mathbb{C} \cup \{e^{i \theta} \cdot \infty : \theta \in \mathbb{R}\}`.

.. macro:: ProjectiveComplexNumbers

    ``ProjectiveComplexNumbers`` is the set of projectively
    extended complex numbers (also known as the Riemann sphere)
    `\mathbb{C} \cup \{\tilde \infty\}`.

.. macro:: RealSingularityClosure

    ``RealSingularityClosure`` is the Calcium singularity closure for real
    functions, encompassing real numbers, signed infinities,
    unsigned infinity, and *undefined* (u). This set is defined as
    `\mathbb{R}_{\text{Sing}} = \mathbb{R} \cup \{+\infty, -\infty\} \cup \{\tilde \infty\} \cup \{ \mathfrak{u} \}`.

.. macro:: ComplexSingularityClosure

    ``ComplexSingularityClosure`` is the Calcium singularity closure for complex
    functions, encompassing complex numbers, signed infinities,
    unsigned infinity, and *undefined* (u). This set is defined as
    `\mathbb{C}_{\text{Sing}} = \mathbb{C} \cup \{e^{i \theta} \cdot \infty : \theta \in \mathbb{R}\} \cup \{\tilde \infty\} \cup \{ \mathfrak{u} \}`.


Operators and calculus
------------------------------------------------------------------------

Sums and products
........................................................................

.. macro:: Sum

.. macro:: Product

.. macro:: PrimeSum

.. macro:: PrimeProduct

.. macro:: DivisorSum

.. macro:: DivisorProduct

Solutions and zeros
........................................................................

.. macro:: Zeros

.. macro:: UniqueZero

.. macro:: Solutions

.. macro:: UniqueSolution

Extreme values
........................................................................

.. macro:: Supremum

.. macro:: Infimum

.. macro:: Minimum

.. macro:: Maximum

.. macro:: ArgMin

.. macro:: ArgMax

.. macro:: ArgMinUnique

.. macro:: ArgMaxUnique

Limits
........................................................................

.. macro:: Limit

.. macro:: SequenceLimit

.. macro:: RealLimit

.. macro:: LeftLimit

.. macro:: RightLimit

.. macro:: ComplexLimit

.. macro:: MeromorphicLimit

.. macro:: SequenceLimitInferior

.. macro:: SequenceLimitSuperior

.. macro:: AsymptoticTo

Derivatives
........................................................................

.. macro:: Derivative

.. macro:: RealDerivative

.. macro:: ComplexDerivative

.. macro:: ComplexBranchDerivative

.. macro:: MeromorphicDerivative

Integrals
........................................................................

.. macro:: Integral

Complex analysis
........................................................................

.. macro:: Path

.. macro:: CurvePath

.. macro:: Poles

.. macro:: IsHolomorphicOn

.. macro:: IsMeromorphicOn

.. macro:: Residue

.. macro:: ComplexZeroMultiplicity

.. macro:: AnalyticContinuation

Matrices and linear algebra
------------------------------------------------------------------------

.. macro:: Matrix

.. macro:: Row

.. macro:: Column

.. macro:: RowMatrix

.. macro:: ColumnMatrix

.. macro:: DiagonalMatrix

.. macro:: Matrix2x2

.. macro:: ZeroMatrix

.. macro:: IdentityMatrix

.. macro:: Det

.. macro:: Spectrum

.. macro:: SingularValues

.. macro:: Matrices

.. macro:: SL2Z

.. macro:: PSL2Z

.. macro:: SpecialLinearGroup

.. macro:: GeneralLinearGroup

.. macro:: HilbertMatrix


Polynomials, series and rings
------------------------------------------------------------------------

.. macro:: Pol

.. macro:: Ser

.. macro:: Polynomial

.. macro:: Coefficient

.. macro:: PolynomialDegree

.. macro:: Polynomials

.. macro:: PolynomialFractions

.. macro:: FormalPowerSeries

.. macro:: FormalLaurentSeries

.. macro:: FormalPuiseuxSeries

.. macro:: Zero

.. macro:: One

.. macro:: Characteristic

.. macro:: Rings

.. macro:: CommutativeRings

.. macro:: Fields

.. macro:: QuotientRing

.. macro:: FiniteField

.. macro:: EqualQSeriesEllipsis

.. macro:: IndefiniteIntegralEqual

.. macro:: QSeriesCoefficient

.. macro:: Call

.. macro:: CallIndeterminate

Special functions
------------------------------------------------------------------------

Number parts and step functions
........................................................................

.. macro:: Abs

.. macro:: Sign

.. macro:: Re

.. macro:: Im

.. macro:: Arg

.. macro:: Conjugate

.. macro:: Csgn

.. macro:: RealAbs

.. macro:: Max

.. macro:: Min

.. macro:: Floor

.. macro:: Ceil

.. macro:: KroneckerDelta

Primes and divisibility
........................................................................

.. macro:: IsOdd

.. macro:: IsEven

.. macro:: CongruentMod

.. macro:: Divides

.. macro:: Mod

.. macro:: GCD

.. macro:: LCM

.. macro:: XGCD

.. macro:: IsPrime

.. macro:: Prime

.. macro:: PrimePi

.. macro:: DivisorSigma

.. macro:: MoebiusMu

.. macro:: EulerPhi

.. macro:: DiscreteLog

.. macro:: LegendreSymbol

.. macro:: JacobiSymbol

.. macro:: KroneckerSymbol

.. macro:: SquaresR

.. macro:: LiouvilleLambda


Elementary functions
........................................................................

.. macro:: Exp

.. macro:: Log

.. macro:: Sin

.. macro:: Cos

.. macro:: Tan

.. macro:: Cot

.. macro:: Sec

.. macro:: Csc

.. macro:: Sinh

.. macro:: Cosh

.. macro:: Tanh

.. macro:: Coth

.. macro:: Sech

.. macro:: Csch

.. macro:: Asin

.. macro:: Acos

.. macro:: Atan

.. macro:: Acot

.. macro:: Asec

.. macro:: Acsc

.. macro:: Asinh

.. macro:: Acosh

.. macro:: Atanh

.. macro:: Acoth

.. macro:: Asech

.. macro:: Acsch

.. macro:: Atan2

.. macro:: Sinc

.. macro:: LambertW


Combinatorial functions
........................................................................

.. macro:: SloaneA

.. macro:: SymmetricPolynomial

.. macro:: Cyclotomic

.. macro:: Fibonacci

.. macro:: BernoulliB

.. macro:: BernoulliPolynomial

.. macro:: StirlingCycle

.. macro:: StirlingS1

.. macro:: StirlingS2

.. macro:: EulerE

.. macro:: EulerPolynomial

.. macro:: BellNumber

.. macro:: PartitionsP

.. macro:: LandauG


Gamma function and factorials
........................................................................

.. macro:: Factorial

.. macro:: Binomial

.. macro:: Gamma

.. macro:: LogGamma

.. macro:: DoubleFactorial

.. macro:: RisingFactorial

.. macro:: FallingFactorial

.. macro:: HarmonicNumber

.. macro:: DigammaFunction

.. macro:: DigammaFunctionZero

.. macro:: BetaFunction

.. macro:: BarnesG

.. macro:: LogBarnesG

.. macro:: StirlingSeriesRemainder

.. macro:: LogBarnesGRemainder

Orthogonal polynomials
........................................................................

.. macro:: ChebyshevT

.. macro:: ChebyshevU

.. macro:: LegendreP

.. macro:: JacobiP

.. macro:: HermiteH

.. macro:: LaguerreL

.. macro:: GegenbauerC

.. macro:: SphericalHarmonicY

.. macro:: LegendrePolynomialZero

.. macro:: GaussLegendreWeight

Exponential integrals
........................................................................

.. macro:: Erf

.. macro:: Erfc

.. macro:: Erfi

.. macro:: UpperGamma

.. macro:: LowerGamma

.. macro:: IncompleteBeta

.. macro:: IncompleteBetaRegularized

.. macro:: LogIntegral

.. macro:: ExpIntegralE

.. macro:: ExpIntegralEi

.. macro:: SinIntegral

.. macro:: SinhIntegral

.. macro:: CosIntegral

.. macro:: CoshIntegral

.. macro:: FresnelC

.. macro:: FresnelS


Bessel and Airy functions
........................................................................

.. macro:: AiryAi

.. macro:: AiryBi

.. macro:: AiryAiZero

.. macro:: AiryBiZero

.. macro:: BesselJ

.. macro:: BesselI

.. macro:: BesselY

.. macro:: BesselK

.. macro:: HankelH1

.. macro:: HankelH2

.. macro:: BesselJZero

.. macro:: BesselYZero

.. macro:: CoulombF

.. macro:: CoulombG

.. macro:: CoulombH

.. macro:: CoulombC

.. macro:: CoulombSigma


Hypergeometric functions
........................................................................

.. macro:: Hypergeometric0F1

.. macro:: Hypergeometric1F1

.. macro:: Hypergeometric1F2

.. macro:: Hypergeometric2F1

.. macro:: Hypergeometric2F2

.. macro:: Hypergeometric2F0

.. macro:: Hypergeometric3F2

.. macro:: HypergeometricU

.. macro:: HypergeometricUStar

.. macro:: HypergeometricUStarRemainder

.. macro:: Hypergeometric0F1Regularized

.. macro:: Hypergeometric1F1Regularized

.. macro:: Hypergeometric1F2Regularized

.. macro:: Hypergeometric2F1Regularized

.. macro:: Hypergeometric2F2Regularized

.. macro:: Hypergeometric3F2Regularized


Zeta and L-functions
........................................................................

.. macro:: RiemannZeta

.. macro:: RiemannZetaZero

.. macro:: RiemannHypothesis

.. macro:: RiemannXi

.. macro:: HurwitzZeta

.. macro:: LerchPhi

.. macro:: PolyLog

.. macro:: MultiZetaValue

.. macro:: DirichletL

.. macro:: DirichletLZero

.. macro:: DirichletLambda

.. macro:: DirichletCharacter

.. macro:: DirichletGroup

.. macro:: PrimitiveDirichletCharacters

.. macro:: GeneralizedRiemannHypothesis

.. macro:: ConreyGenerator

.. macro:: GeneralizedBernoulliB

.. macro:: StieltjesGamma

.. macro:: KeiperLiLambda

.. macro:: GaussSum

Elliptic integrals
........................................................................

.. macro:: AGM

.. macro:: AGMSequence

.. macro:: EllipticK

.. macro:: EllipticE

.. macro:: EllipticPi

.. macro:: IncompleteEllipticF

.. macro:: IncompleteEllipticE

.. macro:: IncompleteEllipticPi

.. macro:: CarlsonRF

.. macro:: CarlsonRG

.. macro:: CarlsonRJ

.. macro:: CarlsonRD

.. macro:: CarlsonRC

.. macro:: CarlsonHypergeometricR

.. macro:: CarlsonHypergeometricT


Elliptic, theta and modular functions
........................................................................

.. macro:: JacobiTheta

.. macro:: JacobiThetaQ

.. macro:: DedekindEta

.. macro:: ModularJ

.. macro:: ModularLambda

.. macro:: EisensteinG

.. macro:: EisensteinE

.. macro:: DedekindSum

.. macro:: WeierstrassP

.. macro:: WeierstrassZeta

.. macro:: WeierstrassSigma

.. macro:: EllipticRootE

.. macro:: HilbertClassPolynomial

.. macro:: EulerQSeries

.. macro:: DedekindEtaEpsilon

.. macro:: ModularGroupAction

.. macro:: ModularGroupFundamentalDomain

.. macro:: ModularLambdaFundamentalDomain

.. macro:: PrimitiveReducedPositiveIntegralBinaryQuadraticForms

.. macro:: JacobiThetaEpsilon

.. macro:: JacobiThetaPermutation

Nonsemantic markup
........................................................................

.. macro:: Ellipsis

    ``Ellipsis`` renders as `\ldots` in LaTeX. It can be used to
    indicate missing function arguments for display purposes,
    but it has no predefined builtin semantics.

.. macro:: Parentheses

    ``Parentheses(x)`` semantically represents ``x``, but renders
    with parentheses (`\left(x\right)`) when converted to LaTeX.

.. macro:: Brackets

    ``Brackets(x)`` semantically represents ``x``, but renders
    with brackets (`\left[x\right]`) when converted to LaTeX.

.. macro:: Braces

    ``Braces(x)`` semantically represents ``x``, but renders
    with braces (`\left\{x\right\}`) when converted to LaTeX.

.. macro:: AngleBrackets

    ``AngleBrackets(x)`` semantically represents ``x``, but renders
    with angle brackets (`\left\langle x\right\rangle`) when
    converted to LaTeX.

.. macro:: Logic

    ``Logic(x)`` semantically represents ``x``, but forces logical
    expressions within *x* to be rendered using symbols instead
    of text.

.. macro:: ShowExpandedNormalForm

    ``ShowExpandedNormalForm(x)`` semantically represents ``x``, but
    displays the expanded normal form of the expression instead of
    rendering the expression verbatim.
    Warning: this triggers a nontrivial (potentially very expensive)
    computation.

.. macro:: Subscript


.. raw:: latex

    \newpage