File: fmpz.rst

package info (click to toggle)
flint 3.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 68,996 kB
  • sloc: ansic: 915,350; asm: 14,605; python: 5,340; sh: 4,512; lisp: 2,621; makefile: 787; cpp: 341
file content (1679 lines) | stat: -rw-r--r-- 64,688 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
.. _fmpz:

**fmpz.h** -- integers
===============================================================================

By default, an :type:`fmpz_t` is implemented as an array of
:type:`fmpz`'s of length one to allow passing by reference as one can
do with GMP's :type:`mpz_t` type. The :type:`fmpz_t` type is
simply a single limb, though the user does not need to be aware of
this except in one specific case outlined below.

In all respects, :type:`fmpz_t`'s act precisely like GMP's
``mpz_t``'s, with automatic memory management, however, in the first
place only one limb is used to implement them. Once an :type:`fmpz_t`
overflows a limb then a multiprecision integer is automatically
allocated and instead of storing the actual integer data the
:type:`slong` which implements the type becomes an index into a FLINT
wide array of :type:`mpz_t`'s.

These internal implementation details are not important for the user
to understand, except for three important things.

Firstly, :type:`fmpz_t`'s will be more efficient than :type:`mpz_t`'s
for single limb operations, or more precisely for signed quantities
whose absolute value does not exceed ``FLINT_BITS - 2``` bits.

Secondly, for small integers that fit into ```FLINT_BITS - 2``` bits
much less memory will be used than for an :type:`mpz_t`. When very
many :type:`fmpz_t`'s are used, there can be important cache benefits
on account of this.

Thirdly, it is important to understand how to deal with arrays of
:type:`fmpz_t`'s. As for :type:`mpz_t`'s, there is an underlying type,
an :type:`fmpz`, which can be used to create the array, e.g.

::

   fmpz myarr[100];

Now recall that an :type:`fmpz_t` is an array of length one of
:type:`fmpz`'s. Thus, a pointer to an :type:`fmpz` can be used in
place of an :type:`fmpz_t`. For example, to find the sign of the third
integer in our array we would write

::

   int sign = fmpz_sgn(myarr + 2);

The :type:`fmpz` module provides routines for memory management, basic
manipulation and basic arithmetic.

Unless otherwise specified, all functions in this section permit
aliasing between their input arguments and between their input and
output arguments.

Simple example
--------------

The following example computes the square of the integer `7` and prints
the result.

.. code-block:: c

    #include "fmpz.h"

    int main()
    {
        fmpz_t x, y;
        fmpz_init(x);
        fmpz_init(y);
        fmpz_set_ui(x, 7);
        fmpz_mul(y, x, x);
        fmpz_print(x);
        flint_printf("^2 = ");
        fmpz_print(y);
        flint_printf("\n");
        fmpz_clear(x);
        fmpz_clear(y);
    }

::

   7^2 = 49

Types, macros and constants
-------------------------------------------------------------------------------

.. type:: fmpz

   The FLINT multi-precision integer type uses an inline representation for small
   integers, specifically when the absolute value is at most `2^{62}-1` (on
   64-bit machines) or `2^{30}-1` (on 32-bit machines). It switches
   automatically to a GMP integer for larger values.

   An ``fmpz`` is implemented as an ``slong``. When its second most significant
   bit is `0` the ``fmpz`` represents an ordinary ``slong`` integer whose
   absolute value is at most ``FLINT_BITS - 2`` bits.

   When the second most significant bit is `1` then the value represents a
   pointer (the pointer is shifted right `2` bits and the second most
   significant bit is set to `1`. This relies on the fact that ``malloc`` always
   allocates memory blocks on a `4` or `8` byte boundary).

.. type:: fmpz_t

   An array of length 1 of ``fmpz``'s. This is used to pass ``fmpz``'s around by
   reference without fuss, similar to the way ``mpz_t`` works.

.. macro:: COEFF_MAX

   The largest (positive) value an ``fmpz`` can be if just an ``slong``.

.. macro:: COEFF_MIN

   The smallest (negative) value an ``fmpz`` can be if just an ``slong``.

.. function:: fmpz PTR_TO_COEFF(mpz_ptr ptr)

   A macro to convert an ``mpz_t`` (or more generally any ``mpz_ptr``)
   to an ``fmpz`` (shifts the pointer right by `2` and sets the second most
   significant bit).

.. function:: mpz_ptr COEFF_TO_PTR(fmpz f)

   A macro to convert an ``fmpz`` which represents a pointer into an actual
   pointer to an ``__mpz_struct`` (i.e. to an ``mpz_t``).

.. macro:: COEFF_IS_MPZ(f)

   A macro which returns `1` if `f` represents an ``mpz_t``, otherwise `0` is
   returned.

.. macro:: MPZ_MIN_ALLOC

   A constant determining the minimum number of limbs the *fmpz* memory manager
   will allocate for each *mpz*. This constant is currently 2.

.. function:: mpz_ptr _fmpz_new_mpz(void)

   Returns a pointer to an initialised *mpz* with at least
   :macro:`MPZ_MIN_ALLOC` limbs allocated. This is only used internally.

   **Note:** Requires that ``gmp.h`` has been included before any FLINT
   header is included.

.. function:: void _fmpz_clear_mpz(fmpz f)

   Clears the *mpz* "pointed to" by the *fmpz* *f*. This is only used
   internally.

.. note::

   As of FLINT 3.2.0, it is required that the *mpz* pointed to by *f* has at
   least :macro:`MPZ_MIN_ALLOC` limbs allocated when :func:`_fmpz_clear_mpz` is
   called. Note that GMP functions never reduce the number of allocated limbs,
   apart from a bug in ``mpz_remove`` which as of GMP 6.3.0 may reduce the
   number of allocated limbs in the output *mpz*. Hence, as long as
   ``mpz_realloc`` never is called with a second argument less than
   :macro:`MPZ_MIN_ALLOC` on an *mpz* received from :func:`_fmpz_new_mpz`, any
   other usage should be fine.

.. function:: void _fmpz_cleanup_mpz_content()

   This function does nothing in the reentrant version of ``fmpz``.

.. function:: void _fmpz_cleanup()

   This function does nothing in the reentrant version of ``fmpz``.

.. function:: mpz_ptr _fmpz_promote(fmpz_t f)

   If `f` doesn't represent an ``mpz_t``, initialise one and associate it to
   `f`.

   **Note:** Requires that ``gmp.h`` has been included before any FLINT
   header is included.

.. function:: mpz_ptr _fmpz_promote_val(fmpz_t f)

   If `f` doesn't represent an ``mpz_t``, initialise one and associate it to
   `f`, but preserve the value of `f`.

   This function is for internal use. The resulting ``fmpz`` will be backed by
   an ``mpz_t`` that can be passed to GMP, but the ``fmpz`` will be in an
   inconsistent state with respect to the other FLINT ``fmpz`` functions such as
   ``fmpz_is_zero``, etc.

   **Note:** Requires that ``gmp.h`` has been included before any FLINT
   header is included.

.. function:: void _fmpz_demote(fmpz_t f)

   If `f` represents an ``mpz_t`` clear it and make `f` just represent an
   ``slong``.

.. function:: void _fmpz_demote_val(fmpz_t f)

   If `f` represents an ``mpz_t`` and its value will fit in an ``slong``,
   preserve the value in `f` which we make to represent an ``slong``, and
   clear the ``mpz_t``.

.. function:: int _fmpz_is_canonical(const fmpz_t f)

   Returns 1 if the internal representation of `f` is correctly normalised
   and demoted; 0 otherwise.

Memory management
--------------------------------------------------------------------------------

.. function:: void fmpz_init(fmpz_t f)

    A small ``fmpz_t`` is initialised, i.e. just a ``slong``.
    The value is set to zero.

.. function:: void fmpz_init2(fmpz_t f, ulong limbs)

    Initialises the given ``fmpz_t`` to have space for the given
    number of limbs.

    If ``limbs`` is zero then a small ``fmpz_t`` is allocated,
    i.e. just a ``slong``.  The value is also set to zero.  It is
    not necessary to call this function except to save time.  A call
    to ``fmpz_init`` will do just fine.

.. function:: void fmpz_clear(fmpz_t f)

    Clears the given ``fmpz_t``, releasing any memory associated
    with it, either back to the stack or the OS, depending on
    whether the reentrant or non-reentrant version of FLINT is built.

.. function:: void fmpz_init_set(fmpz_t f, const fmpz_t g)

.. function:: void fmpz_init_set_ui(fmpz_t f, ulong g)

.. function:: void fmpz_init_set_si(fmpz_t f, slong g)

    Initialises `f` and sets it to the value of `g`.


Random generation
--------------------------------------------------------------------------------

For thread-safety, the randomisation methods take as one of their parameters an
object of type ``flint_rand_t``.  Before calling any of the randomisation
functions such an object first has to be initialised with a call to
:func:`flint_rand_init`.  When one is finished generating random numbers, one
should call :func:`flint_rand_clear` to clean up.

.. function:: void fmpz_randbits_unsigned(fmpz_t f, flint_rand_t state, flint_bitcnt_t bits)
              void fmpz_randbits(fmpz_t f, flint_rand_t state, flint_bitcnt_t bits)

    Generates a random integer whose absolute value has precisely the given
    number of bits.

.. function:: void fmpz_randtest_unsigned(fmpz_t f, flint_rand_t state, flint_bitcnt_t bits)
              void fmpz_randtest(fmpz_t f, flint_rand_t state, flint_bitcnt_t bits)

    Generates a random (unsigned) integer whose absolute value has a number of bits which is random from `0` up to ``bits`` inclusive.

.. function:: void fmpz_randtest_not_zero(fmpz_t f, flint_rand_t state, flint_bitcnt_t bits)

    As per ``fmpz_randtest``, but the result will not be `0`. If ``bits`` is set
    to `0`, an exception will result.

.. function:: void fmpz_randm(fmpz_t f, flint_rand_t state, const fmpz_t m)

    Generates a random integer in the range `0` to `m - 1` inclusive.

.. function:: void fmpz_randtest_mod(fmpz_t f, flint_rand_t state, const fmpz_t m)

    Generates a random integer in the range `0` to `m - 1` inclusive, with an
    increased probability of generating values close to the endpoints.

.. function:: void fmpz_randtest_mod_signed(fmpz_t f, flint_rand_t state, const fmpz_t m)

    Generates a random integer in the range `(-m/2, m/2]`, with an increased
    probability of generating values close to the endpoints or close to zero.

.. function:: void fmpz_randprime(fmpz_t f, flint_rand_t state, flint_bitcnt_t bits, int proved)

    Generates a random prime number with the given number of bits.

    The generation is performed by choosing a random number and then finding the
    next largest prime, and therefore does not quite give a uniform distribution
    over the set of primes with that many bits.

    Random number generation is performed using the standard FLINT random number
    generator, which is not suitable for cryptographic use.

    If ``proved`` is nonzero, then the integer returned is guaranteed to
    actually be prime.



Conversion
--------------------------------------------------------------------------------


.. function:: slong fmpz_get_si(const fmpz_t f)

    Returns `f` as a ``slong``.  The result is undefined
    if `f` does not fit into a ``slong``.

.. function:: ulong fmpz_get_ui(const fmpz_t f)

    Returns `f` as an ``ulong``.  The result is undefined
    if `f` does not fit into an ``ulong`` or is negative.

.. function:: void fmpz_get_uiui(ulong * hi, ulong * low, const fmpz_t f)

    If `f` consists of two limbs, then ``*hi`` and ``*low`` are set to the high
    and low limbs, otherwise ``*low`` is set to the low limb and ``*hi`` is set
    to `0`.

.. function:: ulong fmpz_get_nmod(const fmpz_t f, nmod_t mod)

    Returns `f` modulo the integer given by `mod`.

.. function:: double fmpz_get_d(const fmpz_t f)

    Returns `f` as a ``double``, rounding down towards zero if
    `f` cannot be represented exactly. The outcome is undefined
    if `f` is too large to fit in the normal range of a double.

.. function:: void fmpz_set_mpf(fmpz_t f, const mpf_t x)

    Sets `f` to the ``mpf_t`` `x`, rounding down towards zero if
    the value of `x` is fractional.

    **Note:** Requires that ``gmp.h`` has been included before any FLINT
    header is included.

.. function:: void fmpz_get_mpf(mpf_t x, const fmpz_t f)

    Sets the value of the ``mpf_t`` `x` to the value of `f`.

    **Note:** Requires that ``gmp.h`` has been included before any FLINT
    header is included.

.. function:: void fmpz_get_mpfr(mpfr_t x, const fmpz_t f, mpfr_rnd_t rnd)

    Sets the value of `x` from `f`, rounded toward the given
    direction ``rnd``.

    **Note:** Requires that ``mpfr.h`` has been included before any FLINT
    header is included.

.. function:: double fmpz_get_d_2exp(slong * exp, const fmpz_t f)

    Returns `f` as a normalized ``double`` along with a `2`-exponent
    ``exp``, i.e. if `r` is the return value then `f = r 2^{exp}`,
    to within 1 ULP.

.. function:: void fmpz_get_mpz(mpz_t x, const fmpz_t f)

    Sets the ``mpz_t`` `x` to the same value as `f`.

    **Note:** Requires that ``gmp.h`` has been included before any FLINT
    header is included.

.. function:: int fmpz_get_mpn(nn_ptr * n, fmpz_t n_in)

    Sets the ``nn_ptr`` `n` to the same value as `n_{in}`. Returned
    integer is number of limbs allocated to `n`, minimum number of limbs
    required to hold the value stored in `n_{in}`.

.. function:: char * fmpz_get_str(char * str, int b, const fmpz_t f)

    Returns the representation of `f` in base `b`, which can vary
    between `2` and `62`, inclusive.

    If ``str`` is ``NULL``, the result string is allocated by
    the function.  Otherwise, it is up to the caller to ensure that
    the allocated block of memory is sufficiently large.

.. function:: void fmpz_set_si(fmpz_t f, slong val)

    Sets `f` to the given ``slong`` value.

.. function:: void fmpz_set_ui(fmpz_t f, ulong val)

    Sets `f` to the given ``ulong`` value.

.. function:: void fmpz_set_d(fmpz_t f, double c)

    Sets `f` to the ``double`` `c`, rounding down towards zero if
    the value of `c` is fractional. The outcome is undefined if `c` is
    infinite, not-a-number, or subnormal.

.. function:: void fmpz_set_d_2exp(fmpz_t f, double d, slong exp)

    Sets `f` to the nearest integer to `d 2^{exp}`.

.. function:: void fmpz_neg_ui(fmpz_t f, ulong val)

    Sets `f` to the given ``ulong`` value, and then negates `f`.

.. function:: void fmpz_set_uiui(fmpz_t f, ulong hi, ulong lo)

    Sets `f` to ``lo``, plus ``hi`` shifted to the left by
    ``FLINT_BITS``.

.. function:: void fmpz_neg_uiui(fmpz_t f, ulong hi, ulong lo)

    Sets `f` to ``lo``, plus ``hi`` shifted to the left by
    ``FLINT_BITS``, and then negates `f`.

.. function:: void fmpz_set_signed_uiui(fmpz_t f, ulong hi, ulong lo)

    Sets `f` to ``lo``, plus ``hi`` shifted to the left by
    ``FLINT_BITS``, interpreted as a signed two's complement
    integer with ``2 * FLINT_BITS`` bits.

.. function:: void fmpz_set_signed_uiuiui(fmpz_t f, ulong hi, ulong mid, ulong lo)

    Sets `f` to ``lo``, plus ``mid`` shifted to the left by
    ``FLINT_BITS``, plus ``hi`` shifted to the left by
    ``2*FLINT_BITS`` bits, interpreted as a signed two's complement
    integer with ``3 * FLINT_BITS`` bits.

.. function:: void fmpz_set_ui_array(fmpz_t out, const ulong * in, slong n)

    Sets ``out`` to the nonnegative integer
    ``in[0] + in[1]*X  + ... + in[n - 1]*X^(n - 1)``
    where ``X = 2^FLINT_BITS``. It is assumed that ``n > 0``.

.. function:: void fmpz_set_signed_ui_array(fmpz_t out, const ulong * in, slong n)

    Sets ``out`` to the integer represented in ``in[0], ..., in[n - 1]``
    as a signed two's complement integer with ``n * FLINT_BITS`` bits.
    It is assumed that ``n > 0``. The function operates as a call to
    :func:`fmpz_set_ui_array` followed by a symmetric remainder modulo
    `2^{n\cdot FLINT\_BITS}`.

.. function:: void fmpz_get_ui_array(ulong * out, slong n, const fmpz_t in)

    Assuming that the nonnegative integer ``in`` can be represented in the
    form ``out[0] + out[1]*X + ... + out[n - 1]*X^(n - 1)``,
    where `X = 2^{FLINT\_BITS}`, sets the corresponding elements of ``out``
    so that this is true. It is assumed that ``n > 0``.

.. function:: void fmpz_get_signed_ui_array(ulong * out, slong n, const fmpz_t in)

    Retrieves the value of `in` modulo `2^{n * FLINT\_BITS}` and puts the `n`
    words of the result in ``out[0], ..., out[n-1]``. This will give a signed
    two's complement representation of `in` (assuming `in` doesn't overflow the array).

.. function:: void fmpz_set_mpn_large(fmpz_t z, nn_srcptr src, slong n, int negative)

    Sets *z* to the integer represented by the *n* limbs in the array *src*,
    or minus this value if *negative* is 1.
    Requires `n \ge 2` and that the top limb of *src* is nonzero.
    Note that *fmpz_set_ui*, *fmpz_neg_ui* can be used for single-limb integers.

.. function:: void fmpz_get_signed_uiui(ulong * hi, ulong * lo, const fmpz_t in)

    Retrieves the value of `in` modulo `2^{2 * FLINT\_BITS}` and puts the high
    and low words into ``*hi`` and ``*lo`` respectively.

.. function:: void fmpz_set_mpz(fmpz_t f, const mpz_t x)

    Sets `f` to the given ``mpz_t`` value.

    **Note:** Requires that ``gmp.h`` has been included before any FLINT
    header is included.

.. function:: int fmpz_set_str(fmpz_t f, const char * str, int b)

    Sets `f` to the value given in the null-terminated string ``str``,
    in base `b`. The base `b` can vary between `2` and `62`, inclusive.
    Returns `0` if the string contains a valid input and `-1` otherwise.

.. function:: void fmpz_set_ui_smod(fmpz_t f, ulong x, ulong m)

    Sets `f` to the signed remainder `y \equiv x \bmod m` satisfying
    `-m/2 < y \leq m/2`, given `x` which is assumed to satisfy
    `0 \leq x < m`.

.. function:: void flint_mpz_init_set_readonly(mpz_t z, const fmpz_t f)

    Sets the uninitialised ``mpz_t`` `z` to the value of the
    readonly ``fmpz_t`` `f`.

    Note that it is assumed that `f` does not change during
    the lifetime of `z`.

    The integer `z` has to be cleared by a call to
    :func:`flint_mpz_clear_readonly`.

    The suggested use of the two functions is as follows::

        fmpz_t f;
        ...
        {
            mpz_t z;

            flint_mpz_init_set_readonly(z, f);
            foo(..., z);
            flint_mpz_clear_readonly(z);
        }

    This provides a convenient function for user code, only
    requiring to work with the types ``fmpz_t`` and ``mpz_t``.

    In critical code, the following approach may be favourable::

        fmpz_t f;
        ...
        {
            mpz_ptr z;

            z = _fmpz_promote_val(f);
            foo(..., z);
            _fmpz_demote_val(f);
        }

    **Note:** Requires that ``gmp.h`` has been included before any FLINT
    header is included.

.. function:: void flint_mpz_clear_readonly(mpz_t z)

    Clears the readonly ``mpz_t`` `z`.

    **Note:** Requires that ``gmp.h`` has been included before any FLINT
    header is included.

.. function:: void fmpz_init_set_readonly(fmpz_t f, const mpz_t z)

    Sets the uninitialised ``fmpz_t`` `f` to a readonly
    version of the integer `z`.

    Note that the value of `z` is assumed to remain constant
    throughout the lifetime of `f`.

    The ``fmpz_t`` `f` has to be cleared by calling the
    function :func:`fmpz_clear_readonly`.

    The suggested use of the two functions is as follows::

        mpz_t z;
        ...
        {
            fmpz_t f;

            fmpz_init_set_readonly(f, z);
            foo(..., f);
            fmpz_clear_readonly(f);
        }

    **Note:** Requires that ``gmp.h`` has been included before any FLINT
    header is included.

.. function:: void fmpz_clear_readonly(fmpz_t f)

    Clears the readonly ``fmpz_t`` `f`.


Input and output
--------------------------------------------------------------------------------


.. function:: int fmpz_read(fmpz_t f)

    Reads a multiprecision integer from ``stdin``.  The format is
    an optional minus sign, followed by one or more digits.  The
    first digit should be non-zero unless it is the only digit.

    In case of success, returns a positive number.  In case of failure,
    returns a non-positive number.

    This convention is adopted in light of the return values of
    ``scanf`` from the standard library and ``mpz_inp_str``
    from GMP.

.. function:: int fmpz_fread(FILE * file, fmpz_t f)

    Reads a multiprecision integer from the stream ``file``.  The
    format is an optional minus sign, followed by one or more digits.
    The first digit should be non-zero unless it is the only digit.

    In case of success, returns a positive number.  In case of failure,
    returns a non-positive number.

    This convention is adopted in light of the return values of
    ``scanf`` from the standard library and ``mpz_inp_str``
    from GMP.

.. function:: size_t fmpz_inp_raw(fmpz_t x, FILE * fin)

    Reads a multiprecision integer from the stream ``file``.  The
    format is raw binary format write by :func:`fmpz_out_raw`.

    In case of success, return a positive number, indicating number of bytes read.
    In case of failure 0.

    This function calls the ``mpz_inp_raw`` function in library gmp. So that it
    can read the raw data written by ``mpz_inp_raw`` directly.

.. function:: int fmpz_fprint(FILE * fs, const fmpz_t x)
              int fmpz_print(const fmpz_t x)

    Prints the value `x` to ``fs`` or ``stdout``, without a carriage return.
    The value is printed as either `0`, the decimal digits of a positive
    integer, or a minus sign followed by the digits of a negative integer.

    Returns the number of characters written to file stream.

.. function:: size_t fmpz_out_raw(FILE * fout, const fmpz_t x )

    Writes the value `x` to ``file``.
    The value is written in raw binary format. The integer is written in
    portable format, with 4 bytes of size information, and that many bytes
    of limbs. Both the size and the limbs are written in decreasing
    significance order (i.e., in big-endian).

    The output can be read with ``fmpz_inp_raw``.

    In case of success, return a positive number, indicating number of bytes written.
    In case of failure, return 0.

    The output of this can also be read by ``mpz_inp_raw`` from GMP,
    since this function calls the ``mpz_inp_raw`` function in library gmp.



Basic properties and manipulation
--------------------------------------------------------------------------------


.. function:: size_t fmpz_sizeinbase(const fmpz_t f, int b)

    Returns the size of the absolute value of `f` in base `b`, measured in
    numbers of digits. The base `b` can be between `2` and `62`, inclusive.

.. function:: flint_bitcnt_t fmpz_bits(const fmpz_t f)

    Returns the number of bits required to store the absolute
    value of `f`.  If `f` is `0` then `0` is returned.

.. function:: slong fmpz_size(const fmpz_t f)

    Returns the number of limbs required to store the absolute
    value of `f`.  If `f` is zero then `0` is returned.

.. function:: int fmpz_sgn(const fmpz_t f)

    Returns `-1` if the sign of `f` is negative, `+1` if it is positive,
    otherwise returns `0`.

.. function:: flint_bitcnt_t fmpz_val2(const fmpz_t f)

    Returns the exponent of the largest power of two dividing `f`, or
    equivalently the number of trailing zeros in the binary expansion of `f`.
    If `f` is zero then `0` is returned.

.. function:: void fmpz_swap(fmpz_t f, fmpz_t g)

    Efficiently swaps `f` and `g`.  No data is copied.

.. function:: void fmpz_set(fmpz_t f, const fmpz_t g)

    Sets `f` to the same value as `g`.

.. function:: void fmpz_zero(fmpz_t f)

    Sets `f` to zero.

.. function:: void fmpz_one(fmpz_t f)

    Sets `f` to one.

.. function:: int fmpz_abs_fits_ui(const fmpz_t f)

    Returns whether the absolute value of `f`
    fits into an ``ulong``.

.. function:: int fmpz_fits_si(const fmpz_t f)

    Returns whether the value of `f` fits into a ``slong``.

.. function:: void fmpz_setbit(fmpz_t f, ulong i)

    Sets bit index `i` of `f`.

.. function:: int fmpz_tstbit(const fmpz_t f, ulong i)

    Test bit index `i` of `f` and return `0` or `1`, accordingly.

.. function:: ulong fmpz_abs_lbound_ui_2exp(slong * exp, const fmpz_t x, int bits)

    For nonzero `x`, returns a mantissa `m` with exactly ``bits`` bits and
    sets ``exp`` to an exponent `e`, such that `|x| \ge m 2^e`. The number
    of bits must be between 1 and ``FLINT_BITS`` inclusive.
    The mantissa is guaranteed to be correctly rounded.

.. function:: ulong fmpz_abs_ubound_ui_2exp(slong * exp, const fmpz_t x, int bits)

    For nonzero `x`, returns a mantissa `m` with exactly ``bits`` bits
    and sets ``exp`` to an exponent `e`, such that `|x| \le m 2^e`.
    The number of bits must be between 1 and ``FLINT_BITS`` inclusive.
    The mantissa is either correctly rounded or one unit too large
    (possibly meaning that the exponent is one too large,
    if the mantissa is a power of two).


Comparison
--------------------------------------------------------------------------------


.. function:: int fmpz_cmp(const fmpz_t f, const fmpz_t g)

.. function:: int fmpz_cmp_ui(const fmpz_t f, ulong g)

.. function:: int fmpz_cmp_si(const fmpz_t f, slong g)

    Returns a negative value if `f < g`, positive value if `g < f`,
    otherwise returns `0`.

.. function:: int fmpz_cmpabs(const fmpz_t f, const fmpz_t g)

    Returns a negative value if `\lvert f\rvert < \lvert g\rvert`, positive value if
    `\lvert g\rvert < \lvert f \rvert`, otherwise returns `0`.

.. function:: int fmpz_cmp2abs(const fmpz_t f, const fmpz_t g)

    Returns a negative value if `\lvert f\rvert < \lvert 2g\rvert`, positive value if
    `\lvert 2g\rvert < \lvert f \rvert`, otherwise returns `0`.

.. function:: int fmpz_equal(const fmpz_t f, const fmpz_t g)

.. function:: int fmpz_equal_ui(const fmpz_t f, ulong g)

.. function:: int fmpz_equal_si(const fmpz_t f, slong g)

    Returns `1` if `f` is equal to `g`, otherwise returns `0`.

.. function:: int fmpz_is_zero(const fmpz_t f)

    Returns `1` if `f` is `0`, otherwise returns `0`.

.. function:: int fmpz_is_one(const fmpz_t f)

    Returns `1` if `f` is equal to one, otherwise returns `0`.

.. function:: int fmpz_is_pm1(const fmpz_t f)

    Returns `1` if `f` is equal to one or minus one, otherwise returns `0`.

.. function:: int fmpz_is_even(const fmpz_t f)

    Returns whether the integer `f` is even.

.. function:: int fmpz_is_odd(const fmpz_t f)

    Returns whether the integer `f` is odd.


Basic arithmetic
--------------------------------------------------------------------------------


.. function:: void fmpz_neg(fmpz_t f1, const fmpz_t f2)

    Sets `f_1` to `-f_2`.

.. function:: void fmpz_abs(fmpz_t f1, const fmpz_t f2)

    Sets `f_1` to the absolute value of `f_2`.

.. function:: void fmpz_add(fmpz_t f, const fmpz_t g, const fmpz_t h)
              void fmpz_add_ui(fmpz_t f, const fmpz_t g, ulong h)
              void fmpz_add_si(fmpz_t f, const fmpz_t g, slong h)

    Sets `f` to `g + h`.

.. function:: void fmpz_sub(fmpz_t f, const fmpz_t g, const fmpz_t h)
              void fmpz_sub_ui(fmpz_t f, const fmpz_t g, ulong h)
              void fmpz_sub_si(fmpz_t f, const fmpz_t g, slong h)

    Sets `f` to `g - h`.

.. function:: void fmpz_mul(fmpz_t f, const fmpz_t g, const fmpz_t h)
              void fmpz_mul_ui(fmpz_t f, const fmpz_t g, ulong h)
              void fmpz_mul_si(fmpz_t f, const fmpz_t g, slong h)

    Sets `f` to `g \times h`.

.. function:: void fmpz_mul2_uiui(fmpz_t f, const fmpz_t g, ulong x, ulong y)

    Sets `f` to `g \times x \times y` where `x` and `y` are of type ``ulong``.

.. function:: void fmpz_mul_2exp(fmpz_t f, const fmpz_t g, ulong e)

    Sets `f` to `g \times 2^e`.

    Note: Assumes that ``e + FLINT_BITS`` does not overflow.

.. function:: void fmpz_one_2exp(fmpz_t f, ulong e)

    Sets `f` to `2^e`.

.. function:: void fmpz_addmul(fmpz_t f, const fmpz_t g, const fmpz_t h)
              void fmpz_addmul_ui(fmpz_t f, const fmpz_t g, ulong h)
              void fmpz_addmul_si(fmpz_t f, const fmpz_t g, slong h)

    Sets `f` to `f + g \times h`.

.. function:: void fmpz_submul(fmpz_t f, const fmpz_t g, const fmpz_t h)
              void fmpz_submul_ui(fmpz_t f, const fmpz_t g, ulong h)
              void fmpz_submul_si(fmpz_t f, const fmpz_t g, slong h)

    Sets `f` to `f - g \times h`.

.. function:: void fmpz_fmma(fmpz_t f, const fmpz_t a, const fmpz_t b, const fmpz_t c, const fmpz_t d)

    Sets `f` to `a \times b + c \times d`.

.. function:: void fmpz_fmms(fmpz_t f, const fmpz_t a, const fmpz_t b, const fmpz_t c, const fmpz_t d)

    Sets `f` to `a \times b - c \times d`.

.. function:: void fmpz_cdiv_qr(fmpz_t f, fmpz_t s, const fmpz_t g, const fmpz_t h)

.. function:: void fmpz_fdiv_qr(fmpz_t f, fmpz_t s, const fmpz_t g, const fmpz_t h)

.. function:: void fmpz_tdiv_qr(fmpz_t f, fmpz_t s, const fmpz_t g, const fmpz_t h)

.. function:: void fmpz_ndiv_qr(fmpz_t f, fmpz_t s, const fmpz_t g, const fmpz_t h)

.. function:: void fmpz_cdiv_q(fmpz_t f, const fmpz_t g, const fmpz_t h)

.. function:: void fmpz_fdiv_q(fmpz_t f, const fmpz_t g, const fmpz_t h)

.. function:: void fmpz_tdiv_q(fmpz_t f, const fmpz_t g, const fmpz_t h)

.. function:: void fmpz_cdiv_q_si(fmpz_t f, const fmpz_t g, slong h)

.. function:: void fmpz_fdiv_q_si(fmpz_t f, const fmpz_t g, slong h)

.. function:: void fmpz_tdiv_q_si(fmpz_t f, const fmpz_t g, slong h)

.. function:: void fmpz_cdiv_q_ui(fmpz_t f, const fmpz_t g, ulong h)

.. function:: void fmpz_fdiv_q_ui(fmpz_t f, const fmpz_t g, ulong h)

.. function:: void fmpz_tdiv_q_ui(fmpz_t f, const fmpz_t g, ulong h)

.. function:: void fmpz_cdiv_q_2exp(fmpz_t f, const fmpz_t g, ulong exp)

.. function:: void fmpz_fdiv_q_2exp(fmpz_t f, const fmpz_t g, ulong exp)

.. function:: void fmpz_tdiv_q_2exp(fmpz_t f, const fmpz_t g, ulong exp)

.. function:: void fmpz_fdiv_r(fmpz_t s, const fmpz_t g, const fmpz_t h)

.. function:: void fmpz_cdiv_r_2exp(fmpz_t s, const fmpz_t g, ulong exp)

.. function:: void fmpz_fdiv_r_2exp(fmpz_t s, const fmpz_t g, ulong exp)

.. function:: void fmpz_tdiv_r_2exp(fmpz_t s, const fmpz_t g, ulong exp)

    Sets `f` to the quotient of `g` by `h` and/or `s` to the remainder. For the
    ``2exp`` functions, ``h = 2^exp``. If `h` is `0` an exception is raised.

    Rounding is made in the following way:

    * ``fdiv`` rounds the quotient via floor rounding.
    * ``cdiv`` rounds the quotient via ceil rounding.
    * ``tdiv`` rounds the quotient via truncation, i.e. rounding towards zero.
    * ``ndiv`` rounds the quotient such that the remainder has the smallest
      absolute value. In case of ties, it rounds the quotient towards zero.

.. function:: ulong fmpz_cdiv_ui(const fmpz_t g, ulong h)

.. function:: ulong fmpz_fdiv_ui(const fmpz_t g, ulong h)

.. function:: ulong fmpz_tdiv_ui(const fmpz_t g, ulong h)

   Returns the absolute value remainder of `g` divided by `h`, following the
   convention of rounding as seen above. If `h` is zero an exception is raised.

.. function:: void fmpz_divexact(fmpz_t f, const fmpz_t g, const fmpz_t h)

.. function:: void fmpz_divexact_si(fmpz_t f, const fmpz_t g, slong h)

.. function:: void fmpz_divexact_ui(fmpz_t f, const fmpz_t g, ulong h)

    Sets `f` to the quotient of `g` and `h`, assuming that the
    division is exact, i.e. `g` is a multiple of `h`.  If `h`
    is `0` an exception is raised.

.. function:: void fmpz_divexact2_uiui(fmpz_t f, const fmpz_t g, ulong x, ulong y)

    Sets `f` to the quotient of `g` and `h = x \times y`, assuming that
    the division is exact, i.e. `g` is a multiple of `h`.
    If `x` or `y` is `0` an exception is raised.

.. function:: int fmpz_divisible(const fmpz_t f, const fmpz_t g)

.. function:: int fmpz_divisible_si(const fmpz_t f, slong g)

    Returns `1` if there is an integer `q` with `f = q g` and `0` if there is
    none.

.. function:: int fmpz_divides(fmpz_t q, const fmpz_t f, const fmpz_t g)

    Returns `1` if there is an integer `q` with `f = q g` and sets `q` to the
    quotient. Otherwise returns `0` and sets `q` to `0`.

.. function:: void fmpz_mod(fmpz_t f, const fmpz_t g, const fmpz_t h)

    Sets `f` to the remainder of `g` divided by `h` such that the remainder is
    non-negative. Assumes that `h` is not zero.

.. function:: ulong fmpz_mod_ui(fmpz_t f, const fmpz_t g, ulong h)

    Sets `f` to the remainder of `g` divided by `h` such that the remainder is
    non-negative and also returns this value. Raises an exception if `h` is zero.

.. function:: void fmpz_smod(fmpz_t f, const fmpz_t g, const fmpz_t h)

    Sets `f` to the signed remainder `y \equiv g \bmod h` satisfying
    `-\lvert h \rvert/2 < y \leq \lvert h\rvert/2`.

.. function:: void fmpz_preinvn_init(fmpz_preinvn_t inv, const fmpz_t f)

    Compute a precomputed inverse ``inv`` of ``f`` for use in the
    ``preinvn`` functions listed below.

.. function:: void fmpz_preinvn_clear(fmpz_preinvn_t inv)

    Clean up the resources used by a precomputed inverse created with the
    :func:`fmpz_preinvn_init` function.

.. function:: void fmpz_fdiv_qr_preinvn(fmpz_t f, fmpz_t s, const fmpz_t g, const fmpz_t h, const fmpz_preinvn_t hinv)

    As per :func:`fmpz_fdiv_qr`, but takes a precomputed inverse ``hinv``
    of `h` constructed using :func:`fmpz_preinvn`.

    This function will be faster than :func:`fmpz_fdiv_qr_preinvn` when the
    number of limbs of `h` is at least ``PREINVN_CUTOFF``.

.. function:: void fmpz_pow_ui(fmpz_t f, const fmpz_t g, ulong x)
              void fmpz_ui_pow_ui(fmpz_t f, ulong g, ulong x)

    Sets `f` to `g^x`.  Defines `0^0 = 1`.

.. function:: int fmpz_pow_fmpz(fmpz_t f, const fmpz_t g, const fmpz_t x)

    Sets `f` to `g^x`. Defines `0^0 = 1`. Return `1` for success and `0` for
    failure. The function throws only if `x` is negative.

.. function:: void fmpz_powm_ui(fmpz_t f, const fmpz_t g, ulong e, const fmpz_t m)

.. function:: void fmpz_powm(fmpz_t f, const fmpz_t g, const fmpz_t e, const fmpz_t m)

    Sets `f` to `g^e \bmod{m}`.  If `e = 0`, sets `f` to `1`.

    Assumes that `m \neq 0`, raises an ``abort`` signal otherwise.

.. function:: slong fmpz_clog(const fmpz_t x, const fmpz_t b)
              slong fmpz_clog_ui(const fmpz_t x, ulong b)

    Returns `\lceil\log_b x\rceil`.

    Assumes that `x \geq 1` and `b \geq 2` and that
    the return value fits into a signed ``slong``.

.. function:: slong fmpz_flog(const fmpz_t x, const fmpz_t b)
              slong fmpz_flog_ui(const fmpz_t x, ulong b)

    Returns `\lfloor\log_b x\rfloor`.

    Assumes that `x \geq 1` and `b \geq 2` and that
    the return value fits into a signed ``slong``.

.. function:: double fmpz_dlog(const fmpz_t x)

    Returns a double precision approximation of the
    natural logarithm of `x`.

    The accuracy depends on the implementation of the floating-point
    logarithm provided by the C standard library. The result can
    typically be expected to have a relative error no greater than 1-2 bits.

.. function:: int fmpz_sqrtmod(fmpz_t b, const fmpz_t a, const fmpz_t p)

    If `p` is prime, set `b` to a square root of `a` modulo `p` if `a` is a
    quadratic residue modulo `p` and return `1`, otherwise return `0`.

    If `p` is not prime the return value is with high probability `0`,
    indicating that `p` is not prime, or `a` is not a square modulo `p`.
    If `p` is not prime and the return value is `1`, the value of `b` is
    meaningless.

.. function:: void fmpz_sqrt(fmpz_t f, const fmpz_t g)

    Sets `f` to the integer part of the square root of `g`, where
    `g` is assumed to be non-negative.  If `g` is negative, an exception
    is raised.

.. function:: void fmpz_sqrtrem(fmpz_t f, fmpz_t r, const fmpz_t g)

    Sets `f` to the integer part of the square root of `g`, where `g` is
    assumed to be non-negative, and sets `r` to the remainder, that is,
    the difference `g - f^2`.  If `g` is negative, an exception is raised.
    The behaviour is undefined if `f` and `r` are aliases.

.. function:: int fmpz_is_square(const fmpz_t f)

    Returns nonzero if `f` is a perfect square and zero otherwise.

.. function:: int fmpz_root(fmpz_t r, const fmpz_t f, slong n)

    Set `r` to the integer part of the `n`-th root of `f`. Requires that
    `n > 0` and that if `n` is even then `f` be non-negative, otherwise an
    exception is raised. The function returns `1` if the root was exact,
    otherwise `0`.

.. function:: int fmpz_is_perfect_power(fmpz_t root, const fmpz_t f)

    If `f` is a perfect power `r^k` set ``root`` to `r` and return `k`,
    otherwise return `0`. Note that `-1, 0, 1` are all considered perfect
    powers. No guarantee is made about `r` or `k` being the smallest
    possible value. Negative values of `f` are permitted.

.. function:: void fmpz_fac_ui(fmpz_t f, ulong n)

    Sets `f` to the factorial `n!` where `n` is an ``ulong``.

.. function:: void fmpz_fib_ui(fmpz_t f, ulong n)

    Sets `f` to the Fibonacci number `F_n` where `n` is an
    ``ulong``.

.. function:: void fmpz_bin_uiui(fmpz_t f, ulong n, ulong k)

    Sets `f` to the binomial coefficient `{n \choose k}`.

.. function:: void _fmpz_rfac_ui(fmpz_t r, const fmpz_t x, ulong a, ulong b)

    Sets `r` to the rising factorial `(x+a) (x+a+1) (x+a+2) \cdots (x+b-1)`.
    Assumes `b > a`.

.. function:: void fmpz_rfac_ui(fmpz_t r, const fmpz_t x, ulong k)

    Sets `r` to the rising factorial `x (x+1) (x+2) \cdots (x+k-1)`.

.. function:: void fmpz_rfac_uiui(fmpz_t r, ulong x, ulong k)

    Sets `r` to the rising factorial `x (x+1) (x+2) \cdots (x+k-1)`.

.. function:: void fmpz_mul_tdiv_q_2exp(fmpz_t f, const fmpz_t g, const fmpz_t h, ulong exp)

    Sets `f` to the product of `g` and `h` divided by ``2^exp``, rounding
    down towards zero.

.. function:: void fmpz_mul_si_tdiv_q_2exp(fmpz_t f, const fmpz_t g, slong x, ulong exp)

    Sets `f` to the product of `g` and `x` divided by ``2^exp``, rounding
    down towards zero.



Greatest common divisor
--------------------------------------------------------------------------------

.. function:: void fmpz_gcd_ui(fmpz_t f, const fmpz_t g, ulong h)

.. function:: void fmpz_gcd(fmpz_t f, const fmpz_t g, const fmpz_t h)

    Sets `f` to the greatest common divisor of `g` and `h`.  The
    result is always non-negative, even if one of `g` and `h` is
    negative.

.. function:: void fmpz_gcd3(fmpz_t f, const fmpz_t a, const fmpz_t b, const fmpz_t c)

    Sets `f` to the greatest common divisor of `a`, `b` and `c`.
    This is equivalent to calling ``fmpz_gcd`` twice, but may be faster.

.. function:: void fmpz_lcm(fmpz_t f, const fmpz_t g, const fmpz_t h)

    Sets `f` to the least common multiple of `g` and `h`.  The
    result is always nonnegative, even if one of `g` and `h` is
    negative.

.. function:: void fmpz_gcdinv(fmpz_t d, fmpz_t a, const fmpz_t f, const fmpz_t g)

    Given integers `f, g` with `0 \leq f < g`, computes the
    greatest common divisor `d = \gcd(f, g)` and the modular
    inverse `a = f^{-1} \pmod{g}`, whenever `f \neq 0`.

    Assumes that `d` and `a` are not aliased.

.. function:: void fmpz_xgcd(fmpz_t d, fmpz_t a, fmpz_t b, const fmpz_t f, const fmpz_t g)

    Computes the extended GCD of `f` and `g`, i.e. the values `a` and `b` such
    that `af + bg = d`, where `d = \gcd(f, g)`. Here `a` will be the same as
    calling ``fmpz_gcdinv`` when `f < g` (or vice versa for `b` when `g < f`).

    To obtain the canonical solution to Bézout's identity, call
    ``fmpz_xgcd_canonical_bezout`` instead. This is also faster.

    Assumes that there is no aliasing among the outputs.

.. function:: void fmpz_xgcd_canonical_bezout(fmpz_t d, fmpz_t a, fmpz_t b, const fmpz_t f, const fmpz_t g)

    Computes the extended GCD `\operatorname{xgcd}(f, g) = (d, a, b)` such that
    the solution is the canonical solution to Bézout's identity. We define the
    canonical solution to satisfy one of the following if one of the given
    conditions apply:

    .. math::

        \operatorname{xgcd}(\pm g, g) &= \bigl(|g|, 0, \operatorname{sgn}(g)\bigr)

        \operatorname{xgcd}(f, 0) &= \bigl(|f|, \operatorname{sgn}(f), 0\bigr)

        \operatorname{xgcd}(0, g) &= \bigl(|g|, 0, \operatorname{sgn}(g)\bigr)

        \operatorname{xgcd}(f, \mp 1) &= (1, 0, \mp 1)

        \operatorname{xgcd}(\mp 1, g) &= (1, \mp 1, 0)\quad g \neq 0, \pm 1

        \operatorname{xgcd}(\mp 2 d, g) &=
                \bigl(d, {\textstyle\frac{d - |g|}{\mp 2 d}}, \operatorname{sgn}(g)\bigr)

        \operatorname{xgcd}(f, \mp 2 d) &=
                \bigl(d, \operatorname{sgn}(f), {\textstyle\frac{d - |g|}{\mp 2 d}}\bigr).


    If the pair `(f, g)` does not satisfy any of these conditions, the solution
    `(d, a, b)` will satisfy the following:

    .. math::

        |a| < \Bigl| \frac{g}{2 d} \Bigr|,
        \qquad |b| < \Bigl| \frac{f}{2 d} \Bigr|.

    Assumes that there is no aliasing among the outputs.

.. function:: void fmpz_xgcd_partial(fmpz_t co2, fmpz_t co1, fmpz_t r2, fmpz_t r1, const fmpz_t L)

    This function is an implementation of Lehmer extended GCD with early
    termination, as used in the ``qfb`` module. It terminates early when
    remainders fall below the specified bound. The initial values ``r1``
    and ``r2`` are treated as successive remainders in the Euclidean
    algorithm and are replaced with the last two remainders computed. The
    values ``co1`` and ``co2`` are the last two cofactors and satisfy
    the identity ``co2*r1 - co1*r2 == +/- r2_orig`` upon termination, where
    ``r2_orig`` is the starting value of ``r2`` supplied, and ``r1``
    and ``r2`` are the final values.

    Aliasing of inputs is not allowed. Similarly aliasing of inputs and outputs
    is not allowed.


Modular arithmetic
--------------------------------------------------------------------------------


.. function:: slong _fmpz_remove(fmpz_t x, const fmpz_t f, double finv)

    Removes all factors `f` from `x` and returns the number of such.

    Assumes that `x` is non-zero, that `f > 1` and that ``finv``
    is the precomputed ``double`` inverse of `f` whenever `f` is
    a small integer and `0` otherwise.

    Does not support aliasing.

.. function:: slong fmpz_remove(fmpz_t rop, const fmpz_t op, const fmpz_t f)

    Remove all occurrences of the factor `f > 1` from the
    integer ``op`` and sets ``rop`` to the resulting
    integer.

    If ``op`` is zero, sets ``rop`` to ``op`` and
    returns `0`.

    Returns an ``abort`` signal if any of the assumptions
    are violated.

.. function:: int fmpz_invmod(fmpz_t f, const fmpz_t g, const fmpz_t h)

    Sets `f` to the inverse of `g` modulo `h`.  The value of `h` may
    not be `0` otherwise an exception results.  If the inverse exists
    the return value will be non-zero, otherwise the return value will
    be `0` and the value of `f` undefined. As a special case, we
    consider any number invertible modulo `h = \pm 1`, with inverse 0.

.. function:: void fmpz_negmod(fmpz_t f, const fmpz_t g, const fmpz_t h)

    Sets `f` to `-g \pmod{h}`, assuming `g` is reduced modulo `h`.

.. function:: int fmpz_jacobi(const fmpz_t a, const fmpz_t n)

    Computes the Jacobi symbol `\left(\frac{a}{n}\right)` for any `a` and odd positive `n`.

.. function:: int fmpz_kronecker(const fmpz_t a, const fmpz_t n)

    Computes the Kronecker symbol `\left(\frac{a}{n}\right)` for any `a` and any `n`.

.. function:: void fmpz_divides_mod_list(fmpz_t xstart, fmpz_t xstride, fmpz_t xlength, const fmpz_t a, const fmpz_t b, const fmpz_t n)

    Set `xstart`, `xstride`, and `xlength` so that the solution set for `x` modulo `n` in `a x = b \bmod n` is exactly `\{xstart + xstride\,i \mid 0 \le i < xlength\}`.
    This function essentially gives a list of possibilities for the fraction `a/b` modulo `n`.
    The outputs may not be aliased, and `n` should be positive.


Bit packing and unpacking
--------------------------------------------------------------------------------


.. function:: int fmpz_bit_pack(ulong * arr, flint_bitcnt_t shift, flint_bitcnt_t bits, const fmpz_t coeff, int negate, int borrow)

    Shifts the given coefficient to the left by ``shift`` bits and adds
    it to the integer in ``arr`` in a field of the given number of bits::

        shift  bits  --------------

        X X X C C C C 0 0 0 0 0 0 0

    An optional borrow of `1` can be subtracted from ``coeff`` before
    it is packed.  If ``coeff`` is negative after the borrow, then a
    borrow will be returned by the function.

    The value of ``shift`` is assumed to be less than ``FLINT_BITS``.
    All but the first ``shift`` bits of ``arr`` are assumed to be zero
    on entry to the function.

    The value of ``coeff`` may also be optionally (and notionally) negated
    before it is used, by setting the ``negate`` parameter to `-1`.

.. function:: int fmpz_bit_unpack(fmpz_t coeff, ulong * arr, flint_bitcnt_t shift, flint_bitcnt_t bits, int negate, int borrow)

    A bit field of the given number of bits is extracted from ``arr``,
    starting after ``shift`` bits, and placed into ``coeff``.  An
    optional borrow of `1` may be added to the coefficient.  If the result
    is negative, a borrow of `1` is returned.  Finally, the resulting
    ``coeff`` may be negated by setting the ``negate`` parameter to `-1`.

    The value of ``shift`` is expected to be less than ``FLINT_BITS``.

.. function:: void fmpz_bit_unpack_unsigned(fmpz_t coeff, const ulong * arr, flint_bitcnt_t shift, flint_bitcnt_t bits)

    A bit field of the given number of bits is extracted from ``arr``,
    starting after ``shift`` bits, and placed into ``coeff``.

    The value of ``shift`` is expected to be less than ``FLINT_BITS``.


Logic Operations
--------------------------------------------------------------------------------


.. function:: void fmpz_complement(fmpz_t r, const fmpz_t f)

    The variable ``r`` is set to the ones-complement of ``f``.

.. function:: void fmpz_clrbit(fmpz_t f, ulong i)

    Sets the ``i``\th bit in ``f`` to zero.

.. function:: void fmpz_combit(fmpz_t f, ulong i)

    Complements the ``i``\th bit in ``f``.

.. function:: void fmpz_and(fmpz_t r, const fmpz_t a, const fmpz_t b)

    Sets ``r`` to the bit-wise logical ``and`` of ``a`` and ``b``.

.. function:: void fmpz_or(fmpz_t r, const fmpz_t a, const fmpz_t b)

    Sets ``r`` to the bit-wise logical (inclusive) ``or`` of
    ``a`` and ``b``.

.. function:: void fmpz_xor(fmpz_t r, const fmpz_t a, const fmpz_t b)

    Sets ``r`` to the bit-wise logical exclusive ``or`` of
    ``a`` and ``b``.

.. function:: ulong fmpz_popcnt(const fmpz_t a)

    Returns the number of '1' bits in the given Z (aka Hamming weight or
    population count).
    The return value is undefined if the input is negative.


Chinese remaindering
--------------------------------------------------------------------------------

The following functions can be used to reconstruct an integer from its
residues modulo a set of prime numbers. The first two
functions, :func:`fmpz_CRT_ui` and :func:`fmpz_CRT`, are easy
to use and allow building the result one residue at a time, which is
useful when the number of needed primes is not known in advance.
The remaining functions support performing the modular reductions and
reconstruction using balanced subdivision. This greatly improves
efficiency for large integers but assumes that the basis of primes is
known in advance. The user must precompute a ``comb``
structure and temporary working space with :func:`fmpz_comb_init` and
:func:`fmpz_comb_temp_init`, and free this data afterwards.
For simple demonstration programs showing how to use the CRT functions,
see ``crt.c`` and ``multi_crt.c`` in the ``examples``
directory.
The ``fmpz_multi_CRT`` class is similar to ``fmpz_multi_CRT_ui`` except that it performs error checking and works with arbitrary moduli.

.. function:: void fmpz_CRT_ui(fmpz_t out, const fmpz_t r1, const fmpz_t m1, ulong r2, ulong m2, int sign)

    Uses the Chinese Remainder Theorem to compute the unique integer
    `0 \le x < M` (if sign = 0) or `-M/2 < x \le M/2` (if sign = 1)
    congruent to `r_1` modulo `m_1` and `r_2` modulo `m_2`,
    where `M = m_1 \times m_2`. The result `x` is stored in ``out``.

    It is assumed that `m_1` and `m_2` are positive coprime integers.

    If sign = 0, it is assumed that `0 \le r_1 < m_1` and `0 \le r_2 < m_2`.
    Otherwise, it is assumed that `-m_1 \le r_1 < m_1` and `0 \le r_2 < m_2`.

.. function:: void fmpz_CRT(fmpz_t out, const fmpz_t r1, const fmpz_t m1, const fmpz_t r2, const fmpz_t m2, int sign)

    Use the Chinese Remainder Theorem to set ``out`` to the unique value
    `0 \le x < M` (if sign = 0) or `-M/2 < x \le M/2` (if sign = 1)
    congruent to `r_1` modulo `m_1` and `r_2` modulo `m_2`,
    where `M = m_1 \times m_2`.

    It is assumed that `m_1` and `m_2` are positive coprime integers.

    If sign = 0, it is assumed that `0 \le r_1 < m_1` and `0 \le r_2 < m_2`.
    Otherwise, it is assumed that `-m_1 \le r_1 < m_1` and `0 \le r_2 < m_2`.

.. function:: void fmpz_multi_mod_ui(ulong * out, const fmpz_t in, const fmpz_comb_t comb, fmpz_comb_temp_t temp)

    Reduces the multiprecision integer ``in`` modulo each of the primes
    stored in the ``comb`` structure. The array ``out`` will be filled
    with the residues modulo these primes. The structure ``temp`` is
    temporary space which must be provided by :func:`fmpz_comb_temp_init` and
    cleared by :func:`fmpz_comb_temp_clear`.

.. function:: void fmpz_multi_CRT_ui(fmpz_t output, nn_srcptr residues, const fmpz_comb_t comb, fmpz_comb_temp_t ctemp, int sign)

    This function takes a set of residues modulo the list of primes
    contained in the ``comb`` structure and reconstructs a multiprecision
    integer modulo the product of the primes which has
    these residues modulo the corresponding primes.

    If `N` is the product of all the primes then ``out`` is normalised to
    be in the range `[0, N)` if sign = 0 and the range `[-(N-1)/2, N/2]`
    if sign = 1. The array ``temp`` is temporary
    space which must be provided by :func:`fmpz_comb_temp_init` and
    cleared by :func:`fmpz_comb_temp_clear`.

.. function:: void fmpz_comb_init(fmpz_comb_t comb, nn_srcptr primes, slong num_primes)

    Initialises a ``comb`` structure for multimodular reduction and
    recombination.  The array ``primes`` is assumed to contain
    ``num_primes`` primes each of ``FLINT_BITS - 1`` bits. Modular
    reductions and recombinations will be done modulo this list of primes.
    The ``primes`` array must not be ``free``'d until the ``comb``
    structure is no longer required and must be cleared by the user.

.. function:: void fmpz_comb_temp_init(fmpz_comb_temp_t temp, const fmpz_comb_t comb)

    Creates temporary space to be used by multimodular and CRT functions
    based on an initialised ``comb`` structure.

.. function:: void fmpz_comb_clear(fmpz_comb_t comb)

    Clears the given ``comb`` structure, releasing any memory it uses.

.. function:: void fmpz_comb_temp_clear(fmpz_comb_temp_t temp)

    Clears temporary space ``temp`` used by multimodular and CRT functions
    using the given ``comb`` structure.


.. function:: void fmpz_multi_CRT_init(fmpz_multi_CRT_t CRT)

    Initialize ``CRT`` for Chinese remaindering.

.. function:: int fmpz_multi_CRT_precompute(fmpz_multi_CRT_t CRT, const fmpz * moduli, slong len)

    Configure ``CRT`` for repeated Chinese remaindering of ``moduli``. The number of moduli, ``len``, should be positive.
    A return of ``0`` indicates that the compilation failed and future
    calls to :func:`fmpz_multi_CRT_precomp` will leave the output undefined.
    A return of ``1`` indicates that the compilation was successful, which occurs if and only
    if either (1) ``len == 1`` and ``modulus + 0`` is nonzero, or (2) no modulus is `0,1,-1` and all moduli are pairwise relatively prime.

.. function:: void fmpz_multi_CRT_precomp(fmpz_t output, const fmpz_multi_CRT_t P, const fmpz * inputs, int sign)

    Set ``output`` to an integer of smallest absolute value that is congruent to ``values + i`` modulo the ``moduli + i``
    in ``P``.

.. function:: int fmpz_multi_CRT(fmpz_t output, const fmpz * moduli, const fmpz * values, slong len, int sign)

    Perform the same operation as :func:`fmpz_multi_CRT_precomp` while internally constructing and destroying the precomputed data.
    All of the remarks in :func:`fmpz_multi_CRT_precompute` apply.

.. function:: void fmpz_multi_CRT_clear(fmpz_multi_CRT_t P)

    Free all space used by ``CRT``.



Primality testing
--------------------------------------------------------------------------------


.. function:: int fmpz_is_strong_probabprime(const fmpz_t n, const fmpz_t a)

    Returns `1` if `n` is a strong probable prime to base `a`, otherwise it
    returns `0`.

.. function:: int fmpz_is_probabprime_lucas(const fmpz_t n)

    Performs a Lucas probable prime test with parameters chosen by Selfridge's
    method `A` as per [BaiWag1980]_.

    Return `1` if `n` is a Lucas probable prime, otherwise return `0`. This
    function declares some composites probably prime, but no primes composite.

.. function:: int fmpz_is_probabprime_BPSW(const fmpz_t n)

    Perform a Baillie-PSW probable prime test with parameters chosen by
    Selfridge's method `A` as per [BaiWag1980]_.

    Return `1` if `n` is a Lucas probable prime, otherwise return `0`.

    There are no known composites passed as prime by this test, though
    infinitely many probably exist. The test will declare no primes
    composite.

.. function:: int fmpz_is_probabprime(const fmpz_t p)

    Performs some trial division and then some probabilistic primality tests.
    If `p` is definitely composite, the function returns `0`, otherwise it
    is declared probably prime, i.e. prime for most practical purposes, and
    the function returns `1`. The chance of declaring a composite prime is
    very small.

    Subsequent calls to the same function do not increase the probability of
    the number being prime.

.. function:: int fmpz_is_prime_pseudosquare(const fmpz_t n)

    Return `0` is `n` is composite. If `n` is too large (greater than about
    `94` bits) the function fails silently and returns `-1`, otherwise, if
    `n` is proven prime by the pseudosquares method, return `1`.

    Tests if `n` is a prime according to Theorem 2.7 in [LukPatWil1996]_.

    We first factor `N` using trial division up to some limit `B`.
    In fact, the number of primes used in the trial factoring is at
    most ``FLINT_PSEUDOSQUARES_CUTOFF``.

    Next we compute `N/B` and find the next pseudosquare `L_p` above
    this value, using a static table as per
    https://oeis.org/A002189/b002189.txt.

    As noted in the text, if `p` is prime then Step 3 will pass. This
    test rejects many composites, and so by this time we suspect
    that `p` is prime. If `N` is `3` or `7` modulo `8`, we are done,
    and `N` is prime.

    We now run a probable prime test, for which no known
    counterexamples are known, to reject any composites. We then
    proceed to prove `N` prime by executing Step 4. In the case that
    `N` is `1` modulo `8`, if Step 4 fails, we extend the number of primes
    `p_i` at Step 3 and hope to find one which passes Step 4. We take
    the test one past the largest `p` for which we have pseudosquares
    `L_p` tabulated, as this already corresponds to the next `L_p` which
    is bigger than `2^{64}` and hence larger than any prime we might be
    testing.

    As explained in the text, Condition 4 cannot fail if `N` is prime.

    The possibility exists that the probable prime test declares a
    composite prime. However in that case an error is printed, as
    that would be of independent interest.

.. function:: int fmpz_is_prime_pocklington(fmpz_t F, fmpz_t R, const fmpz_t n, nn_ptr pm1, slong num_pm1)

    Applies the Pocklington primality test. The test computes a product
    `F` of prime powers which divide `n - 1`.

    The function then returns either `0` if `n` is definitely composite
    or it returns `1` if all factors of `n` are `1 \pmod{F}`. Also in
    that case, `R` is set to `(n - 1)/F`.

    NB: a return value of `1` only proves `n` prime if `F \ge \sqrt{n}`.

    The function does not compute which primes divide `n - 1`. Instead,
    these must be supplied as an array ``pm1`` of length ``num_pm1``.
    It does not matter how many prime factors are supplied, but the more
    that are supplied, the larger F will be.

    There is a balance between the amount of time spent looking for
    factors of `n - 1` and the usefulness of the output (`F` may be as low
    as `2` in some cases).

    A reasonable heuristic seems to be to choose ``limit`` to be some
    small multiple of `\log^3(n)/10` (e.g. `1, 2, 5` or `10`) depending
    on how long one is prepared to wait, then to trial factor up to the
    limit. (See ``_fmpz_nm1_trial_factors``.)

    Requires `n` to be odd.

.. function:: void _fmpz_nm1_trial_factors(const fmpz_t n, nn_ptr pm1, slong * num_pm1, ulong limit)

    Trial factors `n - 1` up to the given limit (approximately) and stores
    the factors in an array ``pm1`` whose length is written out to
    ``num_pm1``.

    One can use `\log(n) + 2` as a bound on the number of factors which might
    be produced (and hence on the length of the array that needs to be
    supplied).

.. function:: int fmpz_is_prime_morrison(fmpz_t F, fmpz_t R, const fmpz_t n, nn_ptr pp1, slong num_pp1)

    Applies the Morrison `p + 1` primality test. The test computes a
    product `F` of primes which divide `n + 1`.

    The function then returns either `0` if `n` is definitely composite
    or it returns `1` if all factors of `n` are `\pm 1 \pmod{F}`. Also in
    that case, `R` is set to `(n + 1)/F`.

    NB: a return value of `1` only proves `n` prime if
    `F > \sqrt{n} + 1`.

    The function does not compute which primes divide `n + 1`. Instead,
    these must be supplied as an array ``pp1`` of length ``num_pp1``.
    It does not matter how many prime factors are supplied, but the more
    that are supplied, the larger `F` will be.

    There is a balance between the amount of time spent looking for
    factors of `n + 1` and the usefulness of the output (`F` may be as low
    as `2` in some cases).

    A reasonable heuristic seems to be to choose ``limit`` to be some
    small multiple of `\log^3(n)/10` (e.g. `1, 2, 5` or `10`) depending
    on how long one is prepared to wait, then to trial factor up to the
    limit. (See ``_fmpz_np1_trial_factors``.)

    Requires `n` to be odd and non-square.

.. function:: void _fmpz_np1_trial_factors(const fmpz_t n, nn_ptr pp1, slong * num_pp1, ulong limit)

    Trial factors `n + 1` up to the given limit (approximately) and stores
    the factors in an array ``pp1`` whose length is written out to
    ``num_pp1``.

    One can use `\log(n) + 2` as a bound on the number of factors which might
    be produced (and hence on the length of the array that needs to be
    supplied).

.. function:: int fmpz_is_prime(const fmpz_t n)

    Attempts to prove `n` prime.  If `n` is proven prime, the function
    returns `1`. If `n` is definitely composite, the function returns `0`.

    This function calls :func:`n_is_prime` for `n` that fits in a single word.
    For `n` larger than one word, it tests divisibility by a few small primes
    and whether `n` is a perfect square to rule out trivial composites.
    For `n` up to about 81 bits, it then uses a strong probable prime test
    (Miller-Rabin test) with the first 13 primes as witnesses. This has
    been shown to prove primality [SorWeb2016]_.

    For larger `n`, it does a single base-2 strong probable prime test
    to eliminate most composite numbers. If `n` passes, it does a
    combination of Pocklington, Morrison and Brillhart, Lehmer, Selfridge
    tests. If any of these tests fails to give a proof, it falls back to
    performing an APRCL test.

    The APRCL test could theoretically fail to prove that `n` is prime
    or composite. In that case, the program aborts. This is not expected to
    occur in practice.

.. function:: void fmpz_lucas_chain(fmpz_t Vm, fmpz_t Vm1, const fmpz_t A, const fmpz_t m, const fmpz_t n)

    Given `V_0 = 2`, `V_1 = A` compute `V_m, V_{m + 1} \pmod{n}` from the
    recurrences `V_j = AV_{j - 1} - V_{j - 2} \pmod{n}`.

    This is computed efficiently using `V_{2j} = V_j^2 - 2 \pmod{n}` and
    `V_{2j + 1} = V_jV_{j + 1} - A \pmod{n}`.

    No aliasing is permitted.

.. function:: void fmpz_lucas_chain_full(fmpz_t Vm, fmpz_t Vm1, const fmpz_t A, const fmpz_t B, const fmpz_t m, const fmpz_t n)

    Given `V_0 = 2`, `V_1 = A` compute `V_m, V_{m + 1} \pmod{n}` from the
    recurrences `V_j = AV_{j - 1} - BV_{j - 2} \pmod{n}`.

    This is computed efficiently using double and add formulas.

    No aliasing is permitted.

.. function:: void fmpz_lucas_chain_double(fmpz_t U2m, fmpz_t U2m1, const fmpz_t Um, const fmpz_t Um1, const fmpz_t A, const fmpz_t B, const fmpz_t n)

    Given `U_m, U_{m + 1} \pmod{n}` compute `U_{2m}, U_{2m + 1} \pmod{n}`.

    Aliasing of `U_{2m}` and `U_m` and aliasing of `U_{2m + 1}` and `U_{m + 1}`
    is permitted. No other aliasing is allowed.

.. function:: void fmpz_lucas_chain_add(fmpz_t Umn, fmpz_t Umn1, const fmpz_t Um, const fmpz_t Um1, const fmpz_t Un, const fmpz_t Un1, const fmpz_t A, const fmpz_t B, const fmpz_t n)

    Given `U_m, U_{m + 1} \pmod{n}` and `U_n, U_{n + 1} \pmod{n}` compute
    `U_{m + n}, U_{m + n + 1} \pmod{n}`.

    Aliasing of `U_{m + n}` with `U_m` or `U_n` and aliasing of `U_{m + n + 1}`
    with `U_{m + 1}` or `U_{n + 1}` is permitted. No other aliasing is allowed.

.. function:: void fmpz_lucas_chain_mul(fmpz_t Ukm, fmpz_t Ukm1, const fmpz_t Um, const fmpz_t Um1, const fmpz_t A, const fmpz_t B, const fmpz_t k, const fmpz_t n)

    Given `U_m, U_{m + 1} \pmod{n}` compute `U_{km}, U_{km + 1} \pmod{n}`.

    Aliasing of `U_{km}` and `U_m` and aliasing of `U_{km + 1}` and `U_{m + 1}`
    is permitted. No other aliasing is allowed.

.. function:: void fmpz_lucas_chain_VtoU(fmpz_t Um, fmpz_t Um1, const fmpz_t Vm, const fmpz_t Vm1, const fmpz_t A, const fmpz_t B, const fmpz_t Dinv, const fmpz_t n)

    Given `V_m, V_{m + 1} \pmod{n}` compute `U_m, U_{m + 1} \pmod{n}`.

    Aliasing of `V_m` and `U_m` and aliasing of `V_{m + 1}` and `U_{m + 1}`
    is permitted. No other aliasing is allowed.

.. function:: int fmpz_divisor_in_residue_class_lenstra(fmpz_t fac, const fmpz_t n, const fmpz_t r, const fmpz_t s)

    If there exists a proper divisor of `n` which is `r \pmod{s}` for
    `0 < r < s < n`, this function returns `1` and sets ``fac`` to such a
    divisor. Otherwise the function returns `0` and the value of ``fac`` is
    undefined.

    We require `\gcd(r, s) = 1`.

    This is efficient if `s^3 > n`.

.. function:: void fmpz_nextprime(fmpz_t res, const fmpz_t n, int proved)

    Finds the next prime number larger than `n`.

    If ``proved`` is nonzero, then the integer returned is guaranteed to
    actually be prime. Otherwise if `n` fits in ``FLINT_BITS - 3`` bits
    ``n_nextprime`` is called, and if not then the GMP ``mpz_nextprime``
    function is called which uses a BPSW test.

Special functions
--------------------------------------------------------------------------------


.. function:: void fmpz_primorial(fmpz_t res, ulong n)

    Sets ``res`` to ``n`` primorial or `n \#`, the product of all prime
    numbers less than or equal to `n`.

.. function:: void fmpz_factor_euler_phi(fmpz_t res, const fmpz_factor_t fac)
              void fmpz_euler_phi(fmpz_t res, const fmpz_t n)

    Sets ``res`` to the Euler totient function `\phi(n)`, counting the
    number of positive integers less than or equal to `n` that are coprime
    to `n`. The factor version takes a precomputed
    factorisation of `n`.

.. function:: int fmpz_factor_moebius_mu(const fmpz_factor_t fac)
              int fmpz_moebius_mu(const fmpz_t n)

    Computes the Moebius function `\mu(n)`, which is defined as `\mu(n) = 0`
    if `n` has a prime factor of multiplicity greater than `1`, `\mu(n) = -1`
    if `n` has an odd number of distinct prime factors, and `\mu(n) = 1` if
    `n` has an even number of distinct prime factors.  By convention,
    `\mu(0) = 0`. The factor version takes a precomputed
    factorisation of `n`.

.. function:: void fmpz_factor_divisor_sigma(fmpz_t res, ulong k, const fmpz_factor_t fac)
              void fmpz_divisor_sigma(fmpz_t res, ulong k, const fmpz_t n)

    Sets ``res`` to `\sigma_k(n)`, the sum of `k`\th powers of all
    divisors of `n`. The factor version takes a precomputed
    factorisation of `n`.