1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
|
.. _fmpz-mod-mpoly:
**fmpz_mod_mpoly.h** -- polynomials over the integers mod n
===============================================================================
The exponents follow the ``mpoly`` interface.
A coefficient may be referenced as a ``fmpz *``, but this may disappear in a future version.
Types, macros and constants
-------------------------------------------------------------------------------
.. type:: fmpz_mod_mpoly_struct
A structure holding a multivariate polynomial over the integers mod n.
.. type:: fmpz_mod_mpoly_t
An array of length `1` of ``fmpz_mod_mpoly_ctx_struct``.
.. type:: fmpz_mod_mpoly_ctx_struct
Context structure representing the parent ring of an ``fmpz_mod_mpoly``.
.. type:: fmpz_mod_mpoly_ctx_t
An array of length `1` of ``fmpz_mod_mpoly_struct``.
Context object
--------------------------------------------------------------------------------
.. function:: void fmpz_mod_mpoly_ctx_init(fmpz_mod_mpoly_ctx_t ctx, slong nvars, const ordering_t ord, const fmpz_t p)
Initialise a context object for a polynomial ring modulo *n* with *nvars* variables and ordering *ord*.
The possibilities for the ordering are ``ORD_LEX``, ``ORD_DEGLEX`` and ``ORD_DEGREVLEX``.
.. function:: slong fmpz_mod_mpoly_ctx_nvars(const fmpz_mod_mpoly_ctx_t ctx)
Return the number of variables used to initialize the context.
.. function:: ordering_t fmpz_mod_mpoly_ctx_ord(const fmpz_mod_mpoly_ctx_t ctx)
Return the ordering used to initialize the context.
.. function:: void fmpz_mod_mpoly_ctx_get_modulus(fmpz_t n, const fmpz_mod_mpoly_ctx_t ctx)
Set *n* to the modulus used to initialize the context.
.. function:: void fmpz_mod_mpoly_ctx_clear(fmpz_mod_mpoly_ctx_t ctx)
Release up any space allocated by an *ctx*.
Memory management
--------------------------------------------------------------------------------
.. function:: void fmpz_mod_mpoly_init(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)
Initialise *A* for use with the given an initialised context object. Its value is set to zero.
.. function:: void fmpz_mod_mpoly_init2(fmpz_mod_mpoly_t A, slong alloc, const fmpz_mod_mpoly_ctx_t ctx)
Initialise *A* for use with the given an initialised context object. Its value is set to zero.
It is allocated with space for *alloc* terms and at least ``MPOLY_MIN_BITS`` bits for the exponents.
.. function:: void fmpz_mod_mpoly_init3(fmpz_mod_mpoly_t A, slong alloc, flint_bitcnt_t bits, const fmpz_mod_mpoly_ctx_t ctx)
Initialise *A* for use with the given an initialised context object. Its value is set to zero.
It is allocated with space for *alloc* terms and *bits* bits for the exponents.
.. function:: void fmpz_mod_mpoly_clear(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)
Release any space allocated for *A*.
Input/Output
--------------------------------------------------------------------------------
The variable strings in *x* start with the variable of most significance at index `0`. If *x* is ``NULL``, the variables are named ``x1``, ``x2``, etc.
.. function:: char * fmpz_mod_mpoly_get_str_pretty(const fmpz_mod_mpoly_t A, const char ** x, const fmpz_mod_mpoly_ctx_t ctx)
Return a string, which the user is responsible for cleaning up, representing *A*, given an array of variable strings *x*.
.. function:: int fmpz_mod_mpoly_fprint_pretty(FILE * file, const fmpz_mod_mpoly_t A, const char ** x, const fmpz_mod_mpoly_ctx_t ctx)
Print a string representing *A* to *file*.
.. function:: int fmpz_mod_mpoly_print_pretty(const fmpz_mod_mpoly_t A, const char ** x, const fmpz_mod_mpoly_ctx_t ctx)
Print a string representing *A* to ``stdout``.
.. function:: int fmpz_mod_mpoly_set_str_pretty(fmpz_mod_mpoly_t A, const char * str, const char ** x, const fmpz_mod_mpoly_ctx_t ctx)
Set *A* to the polynomial in the null-terminates string *str* given an array *x* of variable strings.
If parsing *str* fails, *A* is set to zero, and `-1` is returned. Otherwise, `0` is returned.
The operations ``+``, ``-``, ``*``, and ``/`` are permitted along with integers and the variables in *x*. The character ``^`` must be immediately followed by the (integer) exponent.
If any division is not exact, parsing fails.
Basic manipulation
--------------------------------------------------------------------------------
.. function:: void fmpz_mod_mpoly_gen(fmpz_mod_mpoly_t A, slong var, const fmpz_mod_mpoly_ctx_t ctx)
Set *A* to the variable of index *var*, where `var = 0` corresponds to the variable with the most significance with respect to the ordering.
.. function:: int fmpz_mod_mpoly_is_gen(const fmpz_mod_mpoly_t A, slong var, const fmpz_mod_mpoly_ctx_t ctx)
If `var \ge 0`, return `1` if *A* is equal to the `var`-th generator, otherwise return `0`.
If `var < 0`, return `1` if the polynomial is equal to any generator, otherwise return `0`.
.. function:: void fmpz_mod_mpoly_set(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)
Set *A* to *B*.
.. function:: int fmpz_mod_mpoly_equal(const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)
Return `1` if *A* is equal to *B*, else return `0`.
.. function:: void fmpz_mod_mpoly_swap(fmpz_mod_mpoly_t poly1, fmpz_mod_mpoly_t poly2, const fmpz_mod_mpoly_ctx_t ctx)
Efficiently swap *A* and *B*.
Constants
--------------------------------------------------------------------------------
.. function:: int fmpz_mod_mpoly_is_fmpz(const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)
Return `1` if *A* is a constant, else return `0`.
.. function:: void fmpz_mod_mpoly_get_fmpz(fmpz_t c, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)
Assuming that *A* is a constant, set *c* to this constant.
This function throws if *A* is not a constant.
.. function:: void fmpz_mod_mpoly_set_fmpz(fmpz_mod_mpoly_t A, const fmpz_t c, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_set_ui(fmpz_mod_mpoly_t A, ulong c, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_set_si(fmpz_mod_mpoly_t A, slong c, const fmpz_mod_mpoly_ctx_t ctx)
Set *A* to the constant *c*.
.. function:: void fmpz_mod_mpoly_zero(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)
Set *A* to the constant `0`.
.. function:: void fmpz_mod_mpoly_one(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)
Set *A* to the constant `1`.
.. function:: int fmpz_mod_mpoly_equal_fmpz(const fmpz_mod_mpoly_t A, const fmpz_t c, const fmpz_mod_mpoly_ctx_t ctx)
int fmpz_mod_mpoly_equal_ui(const fmpz_mod_mpoly_t A, ulong c, const fmpz_mod_mpoly_ctx_t ctx)
int fmpz_mod_mpoly_equal_si(const fmpz_mod_mpoly_t A, slong c, const fmpz_mod_mpoly_ctx_t ctx)
Return `1` if *A* is equal to the constant *c*, else return `0`.
.. function:: int fmpz_mod_mpoly_is_zero(const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)
Return `1` if *A* is the constant `0`, else return `0`.
.. function:: int fmpz_mod_mpoly_is_one(const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)
Return `1` if *A* is the constant `1`, else return `0`.
Degrees
--------------------------------------------------------------------------------
.. function:: int fmpz_mod_mpoly_degrees_fit_si(const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)
Return `1` if the degrees of *A* with respect to each variable fit into an ``slong``, otherwise return `0`.
.. function:: void fmpz_mod_mpoly_degrees_fmpz(fmpz ** degs, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_degrees_si(slong * degs, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)
Set *degs* to the degrees of *A* with respect to each variable.
If *A* is zero, all degrees are set to `-1`.
.. function:: void fmpz_mod_mpoly_degree_fmpz(fmpz_t deg, const fmpz_mod_mpoly_t A, slong var, const fmpz_mod_mpoly_ctx_t ctx)
slong fmpz_mod_mpoly_degree_si(const fmpz_mod_mpoly_t A, slong var, const fmpz_mod_mpoly_ctx_t ctx)
Either return or set *deg* to the degree of *A* with respect to the variable of index *var*.
If *A* is zero, the degree is defined to be `-1`.
.. function:: int fmpz_mod_mpoly_total_degree_fits_si(const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)
Return `1` if the total degree of *A* fits into an ``slong``, otherwise return `0`.
.. function:: void fmpz_mod_mpoly_total_degree_fmpz(fmpz_t tdeg, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)
slong fmpz_mod_mpoly_total_degree_si(const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)
Either return or set *tdeg* to the total degree of *A*.
If *A* is zero, the total degree is defined to be `-1`.
.. function:: void fmpz_mod_mpoly_used_vars(int * used, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)
For each variable index *i*, set ``used[i]`` to nonzero if the variable of index *i* appears in *A* and to zero otherwise.
Coefficients
--------------------------------------------------------------------------------
.. function:: void fmpz_mod_mpoly_get_coeff_fmpz_monomial(fmpz_t c, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t M, const fmpz_mod_mpoly_ctx_t ctx)
Assuming that *M* is a monomial, set *c* to the coefficient of the corresponding monomial in *A*.
This function throws if *M* is not a monomial.
.. function:: void fmpz_mod_mpoly_set_coeff_fmpz_monomial(fmpz_mod_mpoly_t A, const fmpz_t c, const fmpz_mod_mpoly_t M, const fmpz_mod_mpoly_ctx_t ctx)
Assuming that *M* is a monomial, set the coefficient of the corresponding monomial in *A* to *c*.
This function throws if *M* is not a monomial.
.. function:: void fmpz_mod_mpoly_get_coeff_fmpz_fmpz(fmpz_t c, const fmpz_mod_mpoly_t A, fmpz * const * exp, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_get_coeff_fmpz_ui(fmpz_t c, const fmpz_mod_mpoly_t A, const ulong * exp, const fmpz_mod_mpoly_ctx_t ctx)
Set *c* to the coefficient of the monomial with exponent vector *exp*.
.. function:: void fmpz_mod_mpoly_set_coeff_fmpz_fmpz(fmpz_mod_mpoly_t A, const fmpz_t c, fmpz * const * exp, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_set_coeff_ui_fmpz(fmpz_mod_mpoly_t A, ulong c, fmpz * const * exp, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_set_coeff_si_fmpz(fmpz_mod_mpoly_t A, slong c, fmpz * const * exp, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_set_coeff_fmpz_ui(fmpz_mod_mpoly_t A, const fmpz_t c, const ulong * exp, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_set_coeff_ui_ui(fmpz_mod_mpoly_t A, ulong c, const ulong * exp, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_set_coeff_si_ui(fmpz_mod_mpoly_t A, slong c, const ulong * exp, const fmpz_mod_mpoly_ctx_t ctx)
Set the coefficient of the monomial with exponent vector *exp* to *c*.
.. function:: void fmpz_mod_mpoly_get_coeff_vars_ui(fmpz_mod_mpoly_t C, const fmpz_mod_mpoly_t A, const slong * vars, const ulong * exps, slong length, const fmpz_mod_mpoly_ctx_t ctx)
Set *C* to the coefficient of *A* with respect to the variables in *vars* with powers in the corresponding array *exps*.
Both *vars* and *exps* point to array of length *length*. It is assumed that `0 < length \le nvars(A)` and that the variables in *vars* are distinct.
Comparison
--------------------------------------------------------------------------------
.. function:: int fmpz_mod_mpoly_cmp(const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)
Return `1` (resp. `-1`, or `0`) if *A* is after (resp. before, same as) *B* in some arbitrary but fixed total ordering of the polynomials.
This ordering agrees with the usual ordering of monomials when *A* and *B* are both monomials.
Container operations
--------------------------------------------------------------------------------
These functions deal with violations of the internal canonical representation.
If a term index is negative or not strictly less than the length of the polynomial, the function will throw.
.. function:: int fmpz_mod_mpoly_is_canonical(const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)
Return `1` if *A* is in canonical form. Otherwise, return `0`.
To be in canonical form, all of the terms must have nonzero coefficient, and the terms must be sorted from greatest to least.
.. function:: slong fmpz_mod_mpoly_length(const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)
Return the number of terms in *A*.
If the polynomial is in canonical form, this will be the number of nonzero coefficients.
.. function:: void fmpz_mod_mpoly_resize(fmpz_mod_mpoly_t A, slong new_length, const fmpz_mod_mpoly_ctx_t ctx)
Set the length of *A* to ``new_length``.
Terms are either deleted from the end, or new zero terms are appended.
.. function:: void fmpz_mod_mpoly_get_term_coeff_fmpz(fmpz_t c, const fmpz_mod_mpoly_t A, slong i, const fmpz_mod_mpoly_ctx_t ctx)
Set *c* to the coefficient of the term of index *i*.
.. function:: void fmpz_mod_mpoly_set_term_coeff_fmpz(fmpz_mod_mpoly_t A, slong i, const fmpz_t c, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_set_term_coeff_ui(fmpz_mod_mpoly_t A, slong i, ulong c, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_set_term_coeff_si(fmpz_mod_mpoly_t A, slong i, slong c, const fmpz_mod_mpoly_ctx_t ctx)
Set the coefficient of the term of index *i* to *c*.
.. function:: int fmpz_mod_mpoly_term_exp_fits_si(const fmpz_mod_mpoly_t poly, slong i, const fmpz_mod_mpoly_ctx_t ctx)
int fmpz_mod_mpoly_term_exp_fits_ui(const fmpz_mod_mpoly_t poly, slong i, const fmpz_mod_mpoly_ctx_t ctx)
Return `1` if all entries of the exponent vector of the term of index *i* fit into an ``slong`` (resp. a ``ulong``). Otherwise, return `0`.
.. function:: void fmpz_mod_mpoly_get_term_exp_fmpz(fmpz ** exp, const fmpz_mod_mpoly_t A, slong i, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_get_term_exp_ui(ulong * exp, const fmpz_mod_mpoly_t A, slong i, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_get_term_exp_si(slong * exp, const fmpz_mod_mpoly_t A, slong i, const fmpz_mod_mpoly_ctx_t ctx)
Set *exp* to the exponent vector of the term of index *i*.
The ``_ui`` (resp. ``_si``) version throws if any entry does not fit into a ``ulong`` (resp. ``slong``).
.. function:: ulong fmpz_mod_mpoly_get_term_var_exp_ui(const fmpz_mod_mpoly_t A, slong i, slong var, const fmpz_mod_mpoly_ctx_t ctx)
slong fmpz_mod_mpoly_get_term_var_exp_si(const fmpz_mod_mpoly_t A, slong i, slong var, const fmpz_mod_mpoly_ctx_t ctx)
Return the exponent of the variable *var* of the term of index *i*.
This function throws if the exponent does not fit into a ``ulong`` (resp. ``slong``).
.. function:: void fmpz_mod_mpoly_set_term_exp_fmpz(fmpz_mod_mpoly_t A, slong i, fmpz * const * exp, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_set_term_exp_ui(fmpz_mod_mpoly_t A, slong i, const ulong * exp, const fmpz_mod_mpoly_ctx_t ctx)
Set the exponent vector of the term of index *i* to *exp*.
.. function:: void fmpz_mod_mpoly_get_term(fmpz_mod_mpoly_t M, const fmpz_mod_mpoly_t A, slong i, const fmpz_mod_mpoly_ctx_t ctx)
Set *M* to the term of index *i* in *A*.
.. function:: void fmpz_mod_mpoly_get_term_monomial(fmpz_mod_mpoly_t M, const fmpz_mod_mpoly_t A, slong i, const fmpz_mod_mpoly_ctx_t ctx)
Set *M* to the monomial of the term of index *i* in *A*. The coefficient of *M* will be one.
.. function:: void fmpz_mod_mpoly_push_term_fmpz_fmpz(fmpz_mod_mpoly_t A, const fmpz_t c, fmpz * const * exp, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_push_term_fmpz_ffmpz(fmpz_mod_mpoly_t A, const fmpz_t c, const fmpz * exp, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_push_term_ui_fmpz(fmpz_mod_mpoly_t A, ulong c, fmpz * const * exp, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_push_term_ui_ffmpz(fmpz_mod_mpoly_t A, ulong c, const fmpz * exp, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_push_term_si_fmpz(fmpz_mod_mpoly_t A, slong c, fmpz * const * exp, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_push_term_si_ffmpz(fmpz_mod_mpoly_t A, slong c, const fmpz * exp, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_push_term_fmpz_ui(fmpz_mod_mpoly_t A, const fmpz_t c, const ulong * exp, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_push_term_ui_ui(fmpz_mod_mpoly_t A, ulong c, const ulong * exp, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_push_term_si_ui(fmpz_mod_mpoly_t A, slong c, const ulong * exp, const fmpz_mod_mpoly_ctx_t ctx)
Append a term to *A* with coefficient *c* and exponent vector *exp*.
This function runs in constant average time.
.. function:: void fmpz_mod_mpoly_sort_terms(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)
Sort the terms of *A* into the canonical ordering dictated by the ordering in *ctx*.
This function simply reorders the terms: It does not combine like terms, nor does it delete terms with coefficient zero.
This function runs in linear time in the size of *A*.
.. function:: void fmpz_mod_mpoly_combine_like_terms(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)
Combine adjacent like terms in *A* and delete terms with coefficient zero.
If the terms of *A* were sorted to begin with, the result will be in canonical form.
This function runs in linear time in the size of *A*.
.. function:: void fmpz_mod_mpoly_reverse(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)
Set *A* to the reversal of *B*.
Random generation
--------------------------------------------------------------------------------
.. function:: void fmpz_mod_mpoly_randtest_bound(fmpz_mod_mpoly_t A, flint_rand_t state, slong length, ulong exp_bound, const fmpz_mod_mpoly_ctx_t ctx)
Generate a random polynomial with length up to *length* and exponents in the range ``[0, exp_bound - 1]``.
The exponents of each variable are generated by calls to ``n_randint(state, exp_bound)``.
.. function:: void fmpz_mod_mpoly_randtest_bounds(fmpz_mod_mpoly_t A, flint_rand_t state, slong length, ulong * exp_bounds, const fmpz_mod_mpoly_ctx_t ctx)
Generate a random polynomial with length up to *length* and exponents in the range ``[0, exp_bounds[i] - 1]``.
The exponents of the variable of index *i* are generated by calls to ``n_randint(state, exp_bounds[i])``.
.. function:: void fmpz_mod_mpoly_randtest_bits(fmpz_mod_mpoly_t A, flint_rand_t state, slong length, ulong exp_bits, const fmpz_mod_mpoly_ctx_t ctx)
Generate a random polynomial with length up to *length* and exponents whose packed form does not exceed the given bit count.
Addition/Subtraction
--------------------------------------------------------------------------------
.. function:: void fmpz_mod_mpoly_add_fmpz(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_t c, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_add_ui(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, ulong c, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_add_si(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, slong c, const fmpz_mod_mpoly_ctx_t ctx)
Set *A* to `B + c`.
.. function:: void fmpz_mod_mpoly_sub_fmpz(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_t c, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_sub_ui(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, ulong c, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_sub_si(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, slong c, const fmpz_mod_mpoly_ctx_t ctx)
Set *A* to `B - c`.
.. function:: void fmpz_mod_mpoly_add(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_t C, const fmpz_mod_mpoly_ctx_t ctx)
Set *A* to `B + C`.
.. function:: void fmpz_mod_mpoly_sub(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_t C, const fmpz_mod_mpoly_ctx_t ctx)
Set *A* to `B - C`.
Scalar operations
--------------------------------------------------------------------------------
.. function:: void fmpz_mod_mpoly_neg(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)
Set *A* to `-B`.
.. function:: void fmpz_mod_mpoly_scalar_mul_fmpz(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_t c, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_scalar_mul_ui(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, ulong c, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_scalar_mul_si(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, slong c, const fmpz_mod_mpoly_ctx_t ctx)
Set *A* to `B \times c`.
.. function:: void fmpz_mod_mpoly_scalar_addmul_fmpz(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_t C, const fmpz_t d, const fmpz_mod_mpoly_ctx_t ctx)
Sets *A* to `B + C \times d`.
.. function:: void fmpz_mod_mpoly_make_monic(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)
Set *A* to *B* divided by the leading coefficient of *B*. This throws if *B* is zero or the leading coefficient is not invertible.
Differentiation
--------------------------------------------------------------------------------
.. function:: void fmpz_mod_mpoly_derivative(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, slong var, const fmpz_mod_mpoly_ctx_t ctx)
Set *A* to the derivative of *B* with respect to the variable of index *var*.
Evaluation
--------------------------------------------------------------------------------
These functions return `0` when the operation would imply unreasonable arithmetic.
.. function:: void fmpz_mod_mpoly_evaluate_all_fmpz(fmpz_t eval, const fmpz_mod_mpoly_t A, fmpz * const * vals, const fmpz_mod_mpoly_ctx_t ctx)
Set *ev* to the evaluation of *A* where the variables are replaced by the corresponding elements of the array *vals*.
.. function:: void fmpz_mod_mpoly_evaluate_one_fmpz(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, slong var, const fmpz_t val, const fmpz_mod_mpoly_ctx_t ctx)
Set *A* to the evaluation of *B* where the variable of index *var* is replaced by *val*.
Return `1` for success and `0` for failure.
.. function:: int fmpz_mod_mpoly_compose_fmpz_poly(fmpz_poly_t A, const fmpz_mod_mpoly_t B, fmpz_poly_struct * const * C, const fmpz_mod_mpoly_ctx_t ctxB)
Set *A* to the evaluation of *B* where the variables are replaced by the corresponding elements of the array *C*.
The context object of *B* is *ctxB*.
Return `1` for success and `0` for failure.
.. function:: int fmpz_mod_mpoly_compose_fmpz_mod_mpoly_geobucket(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, fmpz_mod_mpoly_struct * const * C, const fmpz_mod_mpoly_ctx_t ctxB, const fmpz_mod_mpoly_ctx_t ctxAC)
int fmpz_mod_mpoly_compose_fmpz_mod_mpoly_horner(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, fmpz_mod_mpoly_struct * const * C, const fmpz_mod_mpoly_ctx_t ctxB, const fmpz_mod_mpoly_ctx_t ctxAC)
int fmpz_mod_mpoly_compose_fmpz_mod_mpoly(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, fmpz_mod_mpoly_struct * const * C, const fmpz_mod_mpoly_ctx_t ctxB, const fmpz_mod_mpoly_ctx_t ctxAC)
Set *A* to the evaluation of *B* where the variables are replaced by the corresponding elements of the array *C*.
Both *A* and the elements of *C* have context object *ctxAC*, while *B* has context object *ctxB*.
The length of the array *C* is the number of variables in *ctxB*.
Neither *A* nor *B* is allowed to alias any other polynomial.
Return `1` for success and `0` for failure.
The main method attempts to perform the calculation using matrices and chooses heuristically between the ``geobucket`` and ``horner`` methods if needed.
.. function:: void fmpz_mod_mpoly_compose_fmpz_mod_mpoly_gen(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const slong * c, const fmpz_mod_mpoly_ctx_t ctxB, const fmpz_mod_mpoly_ctx_t ctxAC)
Set *A* to the evaluation of *B* where the variable of index *i* in *ctxB* is replaced by the variable of index ``c[i]`` in *ctxAC*.
The length of the array *C* is the number of variables in *ctxB*.
If any ``c[i]`` is negative, the corresponding variable of *B* is replaced by zero. Otherwise, it is expected that ``c[i]`` is less than the number of variables in *ctxAC*.
Multiplication
--------------------------------------------------------------------------------
.. function:: void fmpz_mod_mpoly_mul(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_t C, const fmpz_mod_mpoly_ctx_t ctx)
Set *A* to `B \times C`.
.. function:: void fmpz_mod_mpoly_mul_johnson(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_t C, const fmpz_mod_mpoly_ctx_t ctx)
Set *A* to `B \times C` using Johnson's heap-based method.
.. function:: int fmpz_mod_mpoly_mul_dense(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_t C, const fmpz_mod_mpoly_ctx_t ctx)
Try to set *A* to `B \times C` using dense arithmetic.
If the return is `0`, the operation was unsuccessful. Otherwise, it was successful and the return is `1`.
Powering
--------------------------------------------------------------------------------
These functions return `0` when the operation would imply unreasonable arithmetic.
.. function:: int fmpz_mod_mpoly_pow_fmpz(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_t k, const fmpz_mod_mpoly_ctx_t ctx)
Set *A* to *B* raised to the `k`-th power.
Return `1` for success and `0` for failure.
.. function:: int fmpz_mod_mpoly_pow_ui(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, ulong k, const fmpz_mod_mpoly_ctx_t ctx)
Set *A* to *B* raised to the `k`-th power.
Return `1` for success and `0` for failure.
Division
--------------------------------------------------------------------------------
The division functions assume that the modulus is prime.
.. function:: int fmpz_mod_mpoly_divides(fmpz_mod_mpoly_t Q, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)
If *A* is divisible by *B*, set *Q* to the exact quotient and return `1`. Otherwise, set *Q* to zero and return `0`.
.. function:: void fmpz_mod_mpoly_div(fmpz_mod_mpoly_t Q, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)
Set *Q* to the quotient of *A* by *B*, discarding the remainder.
.. function:: void fmpz_mod_mpoly_divrem(fmpz_mod_mpoly_t Q, fmpz_mod_mpoly_t R, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)
Set *Q* and *R* to the quotient and remainder of *A* divided by *B*.
.. function:: void fmpz_mod_mpoly_divrem_ideal(fmpz_mod_mpoly_struct ** Q, fmpz_mod_mpoly_t R, const fmpz_mod_mpoly_t A, fmpz_mod_mpoly_struct * const * B, slong len, const fmpz_mod_mpoly_ctx_t ctx)
This function is as per :func:`fmpz_mod_mpoly_divrem` except that it takes an array of divisor polynomials *B* and it returns an array of quotient polynomials *Q*.
The number of divisor (and hence quotient) polynomials, is given by *len*.
Greatest Common Divisor
--------------------------------------------------------------------------------
.. function:: void fmpz_mod_mpoly_term_content(fmpz_mod_mpoly_t M, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)
Set *M* to the GCD of the terms of *A*.
If *A* is zero, *M* will be zero. Otherwise, *M* will be a monomial with coefficient one.
.. function:: int fmpz_mod_mpoly_content_vars(fmpz_mod_mpoly_t g, const fmpz_mod_mpoly_t A, slong * vars, slong vars_length, const fmpz_mod_mpoly_ctx_t ctx)
Set *g* to the GCD of the coefficients of *A* when viewed as a polynomial in the variables *vars*.
Return `1` for success and `0` for failure. Upon success, *g* will be independent of the variables *vars*.
.. function:: int fmpz_mod_mpoly_gcd(fmpz_mod_mpoly_t G, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)
Try to set *G* to the monic GCD of *A* and *B*. The GCD of zero and zero is defined to be zero.
If the return is `1` the function was successful. Otherwise the return is `0` and *G* is left untouched.
.. function:: int fmpz_mod_mpoly_gcd_cofactors(fmpz_mod_mpoly_t G, fmpz_mod_mpoly_t Abar, fmpz_mod_mpoly_t Bbar, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)
Do the operation of :func:`fmpz_mod_mpoly_gcd` and also compute `Abar = A/G` and `Bbar = B/G` if successful.
.. function:: int fmpz_mod_mpoly_gcd_brown(fmpz_mod_mpoly_t G, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)
int fmpz_mod_mpoly_gcd_hensel(fmpz_mod_mpoly_t G, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)
int fmpz_mod_mpoly_gcd_subresultant(fmpz_mod_mpoly_t G, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)
int fmpz_mod_mpoly_gcd_zippel(fmpz_mod_mpoly_t G, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)
int fmpz_mod_mpoly_gcd_zippel2(fmpz_mod_mpoly_t G, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)
Try to set *G* to the GCD of *A* and *B* using various algorithms.
.. function:: int fmpz_mod_mpoly_resultant(fmpz_mod_mpoly_t R, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, slong var, const fmpz_mod_mpoly_ctx_t ctx)
Try to set *R* to the resultant of *A* and *B* with respect to the variable of index *var*.
.. function:: int fmpz_mod_mpoly_discriminant(fmpz_mod_mpoly_t D, const fmpz_mod_mpoly_t A, slong var, const fmpz_mod_mpoly_ctx_t ctx)
Try to set *D* to the discriminant of *A* with respect to the variable of index *var*.
Square Root
--------------------------------------------------------------------------------
The square root functions assume that the modulus is prime for correct operation.
.. function:: int fmpz_mod_mpoly_sqrt(fmpz_mod_mpoly_t Q, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)
If `Q^2=A` has a solution, set *Q* to a solution and return `1`, otherwise return `0` and set *Q* to zero.
.. function:: int fmpz_mod_mpoly_is_square(const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)
Return `1` if *A* is a perfect square, otherwise return `0`.
.. function:: int fmpz_mod_mpoly_quadratic_root(fmpz_mod_mpoly_t Q, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctx)
If `Q^2+AQ=B` has a solution, set *Q* to a solution and return `1`, otherwise return `0`.
Univariate Functions
--------------------------------------------------------------------------------
An ``fmpz_mod_mpoly_univar_t`` holds a univariate polynomial in some main variable
with ``fmpz_mod_mpoly_t`` coefficients in the remaining variables. These functions
are useful when one wants to rewrite an element of `\mathbb{Z}/n\mathbb{Z}[x_1, \dots, x_m]`
as an element of `(\mathbb{Z}/n\mathbb{Z}[x_1, \dots, x_{v-1}, x_{v+1}, \dots, x_m])[x_v]`
and vice versa.
.. function:: void fmpz_mod_mpoly_univar_init(fmpz_mod_mpoly_univar_t A, const fmpz_mod_mpoly_ctx_t ctx)
Initialize *A*.
.. function:: void fmpz_mod_mpoly_univar_clear(fmpz_mod_mpoly_univar_t A, const fmpz_mod_mpoly_ctx_t ctx)
Clear *A*.
.. function:: void fmpz_mod_mpoly_univar_swap(fmpz_mod_mpoly_univar_t A, fmpz_mod_mpoly_univar_t B, const fmpz_mod_mpoly_ctx_t ctx)
Swap *A* and *B*.
.. function:: void fmpz_mod_mpoly_to_univar(fmpz_mod_mpoly_univar_t A, const fmpz_mod_mpoly_t B, slong var, const fmpz_mod_mpoly_ctx_t ctx)
Set *A* to a univariate form of *B* by pulling out the variable of index *var*.
The coefficients of *A* will still belong to the content *ctx* but will not depend on the variable of index *var*.
.. function:: void fmpz_mod_mpoly_from_univar(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_univar_t B, slong var, const fmpz_mod_mpoly_ctx_t ctx)
Set *A* to the normal form of *B* by putting in the variable of index *var*.
This function is undefined if the coefficients of *B* depend on the variable of index *var*.
.. function:: int fmpz_mod_mpoly_univar_degree_fits_si(const fmpz_mod_mpoly_univar_t A, const fmpz_mod_mpoly_ctx_t ctx)
Return `1` if the degree of *A* with respect to the main variable fits an ``slong``. Otherwise, return `0`.
.. function:: slong fmpz_mod_mpoly_univar_length(const fmpz_mod_mpoly_univar_t A, const fmpz_mod_mpoly_ctx_t ctx)
Return the number of terms in *A* with respect to the main variable.
.. function:: slong fmpz_mod_mpoly_univar_get_term_exp_si(fmpz_mod_mpoly_univar_t A, slong i, const fmpz_mod_mpoly_ctx_t ctx)
Return the exponent of the term of index *i* of *A*.
.. function:: void fmpz_mod_mpoly_univar_get_term_coeff(fmpz_mod_mpoly_t c, const fmpz_mod_mpoly_univar_t A, slong i, const fmpz_mod_mpoly_ctx_t ctx)
void fmpz_mod_mpoly_univar_swap_term_coeff(fmpz_mod_mpoly_t c, fmpz_mod_mpoly_univar_t A, slong i, const fmpz_mod_mpoly_ctx_t ctx)
Set (resp. swap) *c* to (resp. with) the coefficient of the term of index *i* of *A*.
.. function:: void fmpz_mod_mpoly_univar_set_coeff_ui(fmpz_mod_mpoly_univar_t Ax, ulong e, const fmpz_mod_mpoly_t c, const fmpz_mod_mpoly_ctx_t ctx)
Set the coefficient of `X^e` in *Ax* to *c*.
.. function:: int fmpz_mod_mpoly_univar_resultant(fmpz_mod_mpoly_t R, const fmpz_mod_mpoly_univar_t Ax, const fmpz_mod_mpoly_univar_t Bx, const fmpz_mod_mpoly_ctx_t ctx)
Try to set *R* to the resultant of *Ax* and *Bx*.
.. function:: int fmpz_mod_mpoly_univar_discriminant(fmpz_mod_mpoly_t D, const fmpz_mod_mpoly_univar_t Ax, const fmpz_mod_mpoly_ctx_t ctx)
Try to set *D* to the discriminant of *Ax*.
Vectors
--------------------------------------------------------------------------------
.. type:: fmpz_mod_mpoly_vec_struct
.. type:: fmpz_mod_mpoly_vec_t
A type holding a vector of :type:`fmpz_mod_mpoly_t`.
.. macro:: fmpz_mod_mpoly_vec_entry(vec, i)
Macro for accessing the entry at position *i* in *vec*.
.. function:: void fmpz_mod_mpoly_vec_init(fmpz_mod_mpoly_vec_t vec, slong len, const fmpz_mod_mpoly_ctx_t ctx)
Initializes *vec* to a vector of length *len*, setting all entries to the zero polynomial.
.. function:: void fmpz_mod_mpoly_vec_clear(fmpz_mod_mpoly_vec_t vec, const fmpz_mod_mpoly_ctx_t ctx)
Clears *vec*, freeing its allocated memory.
.. function:: void fmpz_mod_mpoly_vec_print(const fmpz_mod_mpoly_vec_t vec, const fmpz_mod_mpoly_ctx_t ctx)
Prints *vec* to standard output.
.. function:: void fmpz_mod_mpoly_vec_swap(fmpz_mod_mpoly_vec_t x, fmpz_mod_mpoly_vec_t y, const fmpz_mod_mpoly_ctx_t ctx)
Swaps *x* and *y* efficiently.
.. function:: void fmpz_mod_mpoly_vec_fit_length(fmpz_mod_mpoly_vec_t vec, slong len, const fmpz_mod_mpoly_ctx_t ctx)
Allocates room for *len* entries in *vec*.
.. function:: void fmpz_mod_mpoly_vec_set(fmpz_mod_mpoly_vec_t dest, const fmpz_mod_mpoly_vec_t src, const fmpz_mod_mpoly_ctx_t ctx)
Sets *dest* to a copy of *src*.
.. function:: void fmpz_mod_mpoly_vec_append(fmpz_mod_mpoly_vec_t vec, const fmpz_mod_mpoly_t f, const fmpz_mod_mpoly_ctx_t ctx)
Appends *f* to the end of *vec*.
.. function:: slong fmpz_mod_mpoly_vec_insert_unique(fmpz_mod_mpoly_vec_t vec, const fmpz_mod_mpoly_t f, const fmpz_mod_mpoly_ctx_t ctx)
Inserts *f* without duplication into *vec* and returns its index.
If this polynomial already exists, *vec* is unchanged. If this
polynomial does not exist in *vec*, it is appended.
.. function:: void fmpz_mod_mpoly_vec_set_length(fmpz_mod_mpoly_vec_t vec, slong len, const fmpz_mod_mpoly_ctx_t ctx)
Sets the length of *vec* to *len*, truncating or zero-extending
as needed.
.. function:: void fmpz_mod_mpoly_vec_randtest_not_zero(fmpz_mod_mpoly_vec_t vec, flint_rand_t state, slong len, slong poly_len, ulong exp_bound, fmpz_mod_mpoly_ctx_t ctx)
Sets *vec* to a random vector with exactly *len* entries, all nonzero,
with random parameters defined by *poly_len* and *exp_bound*.
Ideals and Gröbner bases
-------------------------------------------------------------------------------
The following methods deal with ideals in `\mathbb{Z}/n\mathbb{Z}[x_1, \dots, x_m]`.
We use monic polynomials as normalised generators.
.. function:: void fmpz_mod_mpoly_spoly(fmpz_mod_mpoly_t res, const fmpz_mod_mpoly_t f, const fmpz_mod_mpoly_t g, const fmpz_mod_mpoly_ctx_t ctx)
Sets *res* to the *S*-polynomial of *f* and *g*, scaled by making *f* and *g* monic first.
.. function:: void fmpz_mod_mpoly_reduction_monic_part(fmpz_mod_mpoly_t res, const fmpz_mod_mpoly_t f, const fmpz_mod_mpoly_vec_t vec, const fmpz_mod_mpoly_ctx_t ctx)
Sets *res* to the monic remainder of multivariate
division with remainder with respect to the polynomials *vec*.
.. function:: int fmpz_mod_mpoly_vec_is_groebner(const fmpz_mod_mpoly_vec_t G, const fmpz_mod_mpoly_vec_t F, const fmpz_mod_mpoly_ctx_t ctx)
If *F* is *NULL*, checks if *G* is a Gröbner basis. If *F* is not *NULL*,
checks if *G* is a Gröbner basis for *F*.
.. function:: int fmpz_mod_mpoly_vec_is_autoreduced(const fmpz_mod_mpoly_vec_t F, const fmpz_mod_mpoly_ctx_t ctx)
Checks whether the vector *F* is autoreduced (or inter-reduced).
.. function:: void fmpz_mod_mpoly_vec_autoreduction(fmpz_mod_mpoly_vec_t H, const fmpz_mod_mpoly_vec_t F, const fmpz_mod_mpoly_ctx_t ctx)
Sets *H* to the autoreduction (inter-reduction) of *F*.
.. function:: void fmpz_mod_mpoly_vec_autoreduction_groebner(fmpz_mod_mpoly_vec_t H, const fmpz_mod_mpoly_vec_t G, const fmpz_mod_mpoly_ctx_t ctx)
Sets *H* to the autoreduction (inter-reduction) of *G*.
Assumes that *G* is a Gröbner basis.
This produces a reduced Gröbner basis, which is unique
(up to the sort order of the entries in the vector).
.. function:: void fmpz_mod_mpoly_buchberger_naive(fmpz_mod_mpoly_vec_t G, const fmpz_mod_mpoly_vec_t F, const fmpz_mod_mpoly_ctx_t ctx)
Sets *G* to a Gröbner basis for *F*, computed using
a naive implementation of Buchberger's algorithm.
.. function:: int fmpz_mod_mpoly_buchberger_naive_with_limits(fmpz_mod_mpoly_vec_t G, const fmpz_mod_mpoly_vec_t F, slong ideal_len_limit, slong poly_len_limit, const fmpz_mod_mpoly_ctx_t ctx)
As :func:`fmpz_mod_mpoly_buchberger_naive`, but halts if during the
execution of Buchberger's algorithm the length of the
ideal basis set exceeds *ideal_len_limit*, or the length of any
polynomial exceeds *poly_len_limit*.
Returns 1 for success and 0 for failure. On failure, *G* is
a valid basis for *F* but it might not be a Gröbner basis.
Converting to/from other polynomial types
-------------------------------------------------------------------------------
.. function:: void fmpz_mod_mpoly_set_fmpz_mpoly(fmpz_mod_mpoly_t A, const fmpz_mpoly_t B, const fmpz_mod_mpoly_ctx_t ctxm, const fmpz_mpoly_ctx_t ctx)
Sets :type:`fmpz_mod_mpoly_t` *A* to :type:`fmpz_mpoly_t` *B* with coefficients modulo the modulus in *ctxm*.
.. function:: void fmpz_mod_mpoly_get_fmpz_mpoly(fmpz_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz_mpoly_ctx_t ctx)
Sets :type:`fmpz_mpoly_t` *A* to the :type:`fmpz_mod_mpoly_t` *B*.
Internal Functions
--------------------------------------------------------------------------------
.. function:: void fmpz_mod_mpoly_inflate(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz * shift, const fmpz * stride, const fmpz_mod_mpoly_ctx_t ctx)
Apply the function ``e -> shift[v] + stride[v]*e`` to each exponent ``e`` corresponding to the variable ``v``.
It is assumed that each shift and stride is not negative.
.. function:: void fmpz_mod_mpoly_deflate(fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_t B, const fmpz * shift, const fmpz * stride, const fmpz_mod_mpoly_ctx_t ctx)
Apply the function ``e -> (e - shift[v])/stride[v]`` to each exponent ``e`` corresponding to the variable ``v``.
If any ``stride[v]`` is zero, the corresponding numerator ``e - shift[v]`` is assumed to be zero, and the quotient is defined as zero.
This allows the function to undo the operation performed by :func:`fmpz_mod_mpoly_inflate` when possible.
.. function:: void fmpz_mod_mpoly_deflation(fmpz * shift, fmpz * stride, const fmpz_mod_mpoly_t A, const fmpz_mod_mpoly_ctx_t ctx)
For each variable `v` let `S_v` be the set of exponents appearing on `v`.
Set ``shift[v]`` to `\operatorname{min}(S_v)` and set ``stride[v]`` to `\operatorname{gcd}(S-\operatorname{min}(S_v))`.
If *A* is zero, all shifts and strides are set to zero.
|